Chris Gerada

List of Publications by Citations

Source: https://exaly.com/author-pdf/9434943/chris-gerada-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

5,846 56 451 35 h-index g-index citations papers 8,098 536 6.44 4.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
451	. IEEE Transactions on Industrial Electronics, 2014 , 61, 2946-2959	8.9	423
450	Multiphase Power Converter Drive for Fault-Tolerant Machine Development in Aerospace Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2010 , 57, 575-583	8.9	127
449	Design Considerations for a Fault-Tolerant Flux-Switching Permanent-Magnet Machine. <i>IEEE Transactions on Industrial Electronics</i> , 2011 , 58, 2818-2825	8.9	109
448	A Thermal Improvement Technique for the Phase Windings of Electrical Machines. <i>IEEE Transactions on Industry Applications</i> , 2012 , 48, 79-87	4.3	106
447	Automatic Design of Synchronous Reluctance Motors Focusing on Barrier Shape Optimization. <i>IEEE Transactions on Industry Applications</i> , 2015 , 51, 1465-1474	4.3	99
446	. IEEE Transactions on Industrial Electronics, 2017 , 64, 6116-6126	8.9	95
445	Design and Initial Testing of a High-Speed 45-kW Switched Reluctance Drive for Aerospace Application. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 988-997	8.9	92
444	Integrated PM Machine Design for an Aircraft EMA. <i>IEEE Transactions on Industrial Electronics</i> , 2008 , 55, 3300-3306	8.9	92
443	Design Aspects of High-Speed High-Power-Density Laminated-Rotor Induction Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2011 , 58, 4039-4047	8.9	91
442	Integrated motor drives: state of the art and future trends. <i>IET Electric Power Applications</i> , 2016 , 10, 757-771	1.8	85
441	PWM-VSI Fault Diagnosis for a PMSM Drive Based on the Fuzzy Logic Approach. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 759-768	7.2	83
440	. IEEE Transactions on Industry Applications, 2014 , 50, 3617-3627	4.3	79
439	Improved Thermal Management and Analysis for Stator End-Windings of Electrical Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 5057-5069	8.9	69
438	Power Loss and Thermal Analysis of a MW High-Speed Permanent Magnet Synchronous Machine. <i>IEEE Transactions on Energy Conversion</i> , 2017 , 32, 1468-1478	5.4	65
437	Design of a Five-Phase Brushless DC Motor for a Safety Critical Aerospace Application. <i>IEEE Transactions on Industrial Electronics</i> , 2012 , 59, 3532-3541	8.9	65
436	A Single Sided Matrix Converter Drive for a Brushless DC Motor in Aerospace Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2012 , 59, 3542-3552	8.9	63
435	Modeling of Different Winding Configurations for Fault-Tolerant Permanent Magnet Machines to Restrain Interturn Short-Circuit Current. <i>IEEE Transactions on Energy Conversion</i> , 2012 , 27, 351-361	5.4	55

(2020-2014)

434	Induction Motors Versus Permanent-Magnet Actuators for Aerospace Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 4315-4325	8.9	52	
433	A Multilevel Converter With a Floating Bridge for Open-End Winding Motor Drive Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2016 , 63, 5366-5375	8.9	52	
432	Sensorless control of PM motor drives 🖪 technology status review 2013 ,		50	
431	Self-Commissioning of Interior Permanent- Magnet Synchronous Motor Drives With High-Frequency Current Injection. <i>IEEE Transactions on Industry Applications</i> , 2014 , 50, 3295-3303	4.3	48	
430	Winding condition monitoring scheme for a permanent magnet machine using high-frequency injection. <i>IET Electric Power Applications</i> , 2011 , 5, 89	1.8	48	
429	Analysis of Vertical Strip Wound Fault-Tolerant Permanent Magnet Synchronous Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 1158-1168	8.9	45	
428	2017,		44	
427	Design Optimization of a High-Speed Synchronous Reluctance Machine. <i>IEEE Transactions on Industry Applications</i> , 2018 , 54, 233-243	4.3	43	
426	Development of Aircraft Electric Starter G enerator System Based on Active Rectification Technology. <i>IEEE Transactions on Transportation Electrification</i> , 2018 , 4, 985-996	7.6	43	
425	A High-Speed Permanent-Magnet Machine for Fault-Tolerant Drivetrains. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 3071-3080	8.9	41	
424	Demagnetization Analysis for Halbach Array Configurations in Electrical Machines. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-9	2	39	
423	High-Speed Solid Rotor Permanent Magnet Machines: Concept and Design. <i>IEEE Transactions on Transportation Electrification</i> , 2016 , 2, 391-400	7.6	39	
422	The results do mesh. <i>IEEE Industry Applications Magazine</i> , 2007 , 13, 62-72	0.6	39	
421	. IEEE Transactions on Industrial Electronics, 2016 , 63, 5558-5568	8.9	39	
420	. IEEE Transactions on Industrial Electronics, 2020 , 67, 7343-7353	8.9	39	
419	Design and Losses Analysis of a High Power Density Machine for Flooded Pump Applications. <i>IEEE Transactions on Industry Applications</i> , 2018 , 54, 3260-3270	4.3	36	
418	A Modified Neutral Point Balancing Space Vector Modulation for Three-Level Neutral Point Clamped Converters in High-Speed Drives. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 910-921	8.9	35	
417	. IEEE Transactions on Industrial Electronics, 2020 , 67, 2618-2629	8.9	35	

416	Performance Evaluation of a Vector-Control Fault-Tolerant Flux-Switching Motor Drive. <i>IEEE Transactions on Industrial Electronics</i> , 2012 , 1-1	8.9	33
415	. IEEE Transactions on Industry Applications, 2019 , 55, 3544-3554	4.3	32
414	Radial Force Control of Multisector Permanent-Magnet Machines for Vibration Suppression. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 5395-5405	8.9	31
413	A Nonlinear Extended State Observer for Rotor Position and Speed Estimation for Sensorless IPMSM Drives. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 733-743	7.2	31
412	Considerations on the Effects That Core Material Machining Has on an Electrical Machine's Performance. <i>IEEE Transactions on Energy Conversion</i> , 2018 , 33, 1154-1163	5.4	30
411	. IEEE Transactions on Industrial Electronics, 2018 , 65, 5302-5312	8.9	30
410	Barriers shapes and minimum set of rotor parameters in the automated design of Synchronous Reluctance machines 2013 ,		30
409	. IEEE Transactions on Industrial Electronics, 2020 , 67, 2630-2641	8.9	30
408	Analysis, Modeling, and Design Considerations for the Excitation Systems of Synchronous Generators. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 2996-3007	8.9	29
407	Thermal effects of stator potting in an axial-flux permanent magnet synchronous generator. <i>Applied Thermal Engineering</i> , 2015 , 75, 421-429	5.8	28
406	Fault Tolerant Design of Fractional Slot Winding Permanent Magnet Aerospace Actuator. <i>IEEE Transactions on Transportation Electrification</i> , 2016 , 2, 380-390	7.6	28
405	Design of a High-Force-Density Tubular Motor. <i>IEEE Transactions on Industry Applications</i> , 2014 , 50, 252	3 _z 2 5 32	2 28
404	Estimation of Eddy Current Loss in Semi-Closed Slot Vertical Conductor Permanent Magnet Synchronous Machines Considering Eddy Current Reaction Effect. <i>IEEE Transactions on Magnetics</i> , 2013 , 49, 5326-5335	2	28
403	Improved Damper Cage Design for Salient-Pole Synchronous Generators. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 1958-1970	8.9	28
402	Winding turn-to-turn faults in permanent magnet synchronous machine drives		28
401	Piezoelectric Fan Cooling: A Novel High Reliability Electric Machine Thermal Management Solution. <i>IEEE Transactions on Industrial Electronics</i> , 2013 , 60, 4841-4851	8.9	27
400	. IEEE Transactions on Industry Applications, 2017 , 53, 1106-1115	4.3	26
399	Development of a new fault-tolerant induction motor control strategy using an enhanced equivalent circuit model. <i>IET Electric Power Applications</i> , 2011 , 5, 618	1.8	26

398	Feasibility and electromagnetic design of direct drive wheel actuator for green taxiing 2011,		26
397	Multi-Physics and Multi-Objective Optimization of a High Speed PMSM for High Performance Applications. <i>IEEE Transactions on Magnetics</i> , 2018 , 54, 1-5	2	26
396	Load Control for the DC Electrical Power Distribution System of the More Electric Aircraft. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 3937-3947	7.2	25
395	A new strategy of efficiency enhancement for traction systems in electric vehicles. <i>Applied Energy</i> , 2017 , 205, 880-891	10.7	25
394	Detent Force, Thrust, and Normal Force of the Short-Primary Double-Sided Permanent Magnet Linear Synchronous Motor With Slot-Shift Structure. <i>IEEE Transactions on Energy Conversion</i> , 2019 , 34, 1411-1421	5.4	23
393	Challenges and Opportunities for Wound Field Synchronous Generators in Future More Electric Aircraft. <i>IEEE Transactions on Transportation Electrification</i> , 2020 , 6, 1466-1477	7.6	23
392	Performance Improvement of Bearingless Multisector PMSM With Optimal Robust Position Control. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 3575-3585	7.2	23
391	An Integrated Method for Three-Phase AC Excitation and High-Frequency Voltage Signal Injection for Sensorless Starting of Aircraft Starter/Generator. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 5611-5622	8.9	23
390	. IEEE Transactions on Industrial Electronics, 2020 , 67, 180-191	8.9	23
389	Multiobjective Optimization of a Magnetically Levitated Planar Motor With Multilayer Windings. <i>IEEE Transactions on Industrial Electronics</i> , 2016 , 63, 3522-3532	8.9	22
388	Development of an aircraft wheel actuator for green taxiing 2014 ,		22
387	. IEEE Transactions on Industry Applications, 2020 , 56, 183-193	4.3	22
386	A high-speed electric drive for the more electric engine 2015 ,		21
385	Space Vectors and Pseudoinverse Matrix Methods for the Radial Force Control in Bearingless Multisector Permanent Magnet Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 6912-692	2 <mark>8</mark> .9	21
384	Optimal design of an electro-mechanical actuator for aerospace application 2015,		21
383	A SyR and IPM machine design methodology assisted by optimization algorithms 2012,		21
382	Design of a high force density tubular permanent magnet motor 2010 ,		21
381	. IEEE Transactions on Industrial Electronics, 2009 , 56, 1708-1717	8.9	21

380	High-Speed Permanent Magnet Synchronous Motor Iron Loss Calculation Method Considering Multiphysics Factors. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 5360-5368	8.9	21
379	. IEEE Transactions on Industrial Electronics, 2017 , 64, 2415-2423	8.9	20
378	Converter topologies comparison for more electric aircrafts high speed Starter/Generator application 2015 ,		20
377	Evaluation and Modeling of Cross Saturation Due to Leakage Flux in Vector-Controlled Induction Machines. <i>IEEE Transactions on Industry Applications</i> , 2007 , 43, 694-702	4.3	20
376	New Three-Phase Current Reconstruction for PMSM Drive With Hybrid Space Vector Pulsewidth Modulation Technique. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 662-673	7.2	20
375	Lifetime Consumption and Degradation Analysis of the Winding Insulation of Electrical Machines 2016 ,		19
374	Torque density improvements for high performance machines 2013,		19
373	High speed electrical generators, application, materials and design 2013,		19
372	More Electric Aircraft Electro-Mechanical Actuator Regenerated Power Management 2015,		19
371	Comparative study of permanent magnet-synchronous and permanent magnet-flux switching machines for high torque to inertia applications 2017 ,		18
370	Electrical machines for aerospace applications 2015,		18
369	Impact of Slot/Pole Combination on Inter-Turn Short-Circuit Current in Fault-Tolerant Permanent Magnet Machines. <i>IEEE Transactions on Magnetics</i> , 2016 , 52, 1-9	2	18
368	Rotor losses in fault-tolerant permanent magnet synchronous machines. <i>IET Electric Power Applications</i> , 2011 , 5, 75	1.8	18
367	Fault-tolerant, matrix converter, permanent magnet synchronous motor drive for open-circuit failures. <i>IET Electric Power Applications</i> , 2011 , 5, 654	1.8	18
366	Electrical machines for high speed applications with a wide constant-power region requirement 2011 ,		18
365	. IEEE Transactions on Industrial Electronics, 2020 , 67, 2553-2563	8.9	18
364	. IEEE Transactions on Industrial Electronics, 2021 , 68, 160-174	8.9	18
363	Design and Testing of PMSM for Aerospace EMA Applications 2018,		18

(2014-2018)

362	Synchronous Reluctance Motor Iron Losses: Considering Machine Nonlinearity at MTPA, FW, and MTPV Operating Conditions. <i>IEEE Transactions on Energy Conversion</i> , 2018 , 33, 1402-1410	5.4	17
361	Self-commissioning of interior permanent magnet synchronous motor drives with high-frequency current injection 2013 ,		17
360	A Third-Order Super-Twisting Extended State Observer for Dynamic Performance Enhancement of Sensorless IPMSM Drives. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 5948-5958	8.9	17
359	High-speed electrical machines and drives [Special section intro.]. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 2943-2945	8.9	16
358	Computational fluid dynamics modelling of an entire synchronous generator for improved thermal management. <i>IET Electric Power Applications</i> , 2013 , 7, 231-236	1.8	16
357	Design of synchronous reluctance machines with multi-objective optimization algorithms 2013,		16
356	. IEEE Transactions on Industry Applications, 2016 , 1-1	4.3	16
355	Free-Form Design of Electrical Machine Rotor Cores for Production Using Additive Manufacturing. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2019 , 141,	3	16
354	State of the Art of Electric Taxiing Systems 2018 ,		16
353	On the Design of Partial Discharge-Free Low Voltage Electrical Machines 2019 ,		15
353 352	On the Design of Partial Discharge-Free Low Voltage Electrical Machines 2019 , TurnBurn short circuit fault management in permanent magnet machines. <i>IET Electric Power Applications</i> , 2015 , 9, 634-641	1.8	15 15
	Turn E urn short circuit fault management in permanent magnet machines. <i>IET Electric Power</i>	1.8 5·5	
352	TurnEurn short circuit fault management in permanent magnet machines. <i>IET Electric Power Applications</i> , 2015 , 9, 634-641		15
35 ²	TurnEurn short circuit fault management in permanent magnet machines. <i>IET Electric Power Applications</i> , 2015 , 9, 634-641 . <i>IEEE/ASME Transactions on Mechatronics</i> , 2018 , 23, 2054-2065 A Low-Intrusion Load and Efficiency Evaluation Method for In-Service Motors Using Vibration Tests	5.5	15 15
352 351 350	TurnEurn short circuit fault management in permanent magnet machines. <i>IET Electric Power Applications</i> , 2015 , 9, 634-641 . <i>IEEE/ASME Transactions on Mechatronics</i> , 2018 , 23, 2054-2065 A Low-Intrusion Load and Efficiency Evaluation Method for In-Service Motors Using Vibration Tests With an Accelerometer. <i>IEEE Transactions on Industry Applications</i> , 2010 , 46, 1341-1349 A Fast Method for Modeling Skew and Its Effects in Salient-Pole Synchronous Generators. <i>IEEE</i>	5·5 4·3	15 15 15
352 351 350 349	TurnBurn short circuit fault management in permanent magnet machines. <i>IET Electric Power Applications</i> , 2015 , 9, 634-641 . <i>IEEE/ASME Transactions on Mechatronics</i> , 2018 , 23, 2054-2065 A Low-Intrusion Load and Efficiency Evaluation Method for In-Service Motors Using Vibration Tests With an Accelerometer. <i>IEEE Transactions on Industry Applications</i> , 2010 , 46, 1341-1349 A Fast Method for Modeling Skew and Its Effects in Salient-Pole Synchronous Generators. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 7679-7688 DC Drift Error Mitigation Method for Three-Phase Current Reconstruction With Single Hall Current	5·5 4·3 8.9	15 15 15
352 351 350 349 348	TurnBurn short circuit fault management in permanent magnet machines. <i>IET Electric Power Applications</i> , 2015 , 9, 634-641 . <i>IEEE/ASME Transactions on Mechatronics</i> , 2018 , 23, 2054-2065 A Low-Intrusion Load and Efficiency Evaluation Method for In-Service Motors Using Vibration Tests With an Accelerometer. <i>IEEE Transactions on Industry Applications</i> , 2010 , 46, 1341-1349 A Fast Method for Modeling Skew and Its Effects in Salient-Pole Synchronous Generators. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 7679-7688 DC Drift Error Mitigation Method for Three-Phase Current Reconstruction With Single Hall Current Sensor. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-4 Thermal analysis of fault-tolerant electrical machines for aerospace actuators. <i>IET Electric Power</i>	5·5 4·3 8.9	15 15 15 14

344	Thermal design of a permanent magnetic motor for direct drive wheel actuator 2014,		14
343	A computationally efficient design procedure for actuator motors using magnetic reluctance-and thermal resistance network models 2012 ,		14
342	Optimal design of a high speed concentrated wound PMSM 2009 ,		14
341	On-line detection of stator winding short-circuit faults in a PM machine using HF signal injection 2008 ,		14
340	Non-linear circuit based model of permanent magnet synchronous machine under inter-turn fault: a simple approach based on healthy machine data. <i>IET Electric Power Applications</i> , 2016 , 10, 560-570	1.8	14
339	. IEEE Transactions on Industrial Electronics, 2019 , 66, 5600-5610	8.9	14
338	Magnetic Field Modeling and Analysis of Spherical Actuator With Two-Dimensional Longitudinal Camber Halbach Array. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 9112-9121	8.9	14
337	Influence of rotor endcaps on the electromagnetic performance of high-speed PM machine. <i>IET Electric Power Applications</i> , 2018 , 12, 1142-1149	1.8	14
336	A dual inverter for an open end winding induction motor drive without an isolation transformer 2015 ,		13
335	. IEEE Transactions on Energy Conversion, 2018 , 33, 1311-1320	5.4	13
334	Condition monitoring approach for permanent magnet synchronous motor drives based on the INFORM method. <i>IET Electric Power Applications</i> , 2016 , 10, 54-62	1.8	13
334		1.8	13
	INFORM method. IET Electric Power Applications, 2016, 10, 54-62	1.8	
333	INFORM method. <i>IET Electric Power Applications</i> , 2016 , 10, 54-62 Inductance characteristics of PMSMs and their impact on saliency-based sensorless control 2010 , A comparative study of permanent magnet - synchronous and permanent magnet - flux switching	1.8	13
333	INFORM method. <i>IET Electric Power Applications</i> , 2016 , 10, 54-62 Inductance characteristics of PMSMs and their impact on saliency-based sensorless control 2010 , A comparative study of permanent magnet - synchronous and permanent magnet - flux switching machines for fault tolerant drive systems 2010 ,	1.8	13
333 332 331	Inductance characteristics of PMSMs and their impact on saliency-based sensorless control 2010, A comparative study of permanent magnet - synchronous and permanent magnet - flux switching machines for fault tolerant drive systems 2010, Design issues of high-speed permanent magnet machines for high-temperature applications 2009,	1.8	13 13
333 332 331 330	Inductance characteristics of PMSMs and their impact on saliency-based sensorless control 2010, A comparative study of permanent magnet - synchronous and permanent magnet - flux switching machines for fault tolerant drive systems 2010, Design issues of high-speed permanent magnet machines for high-temperature applications 2009, Induction Motor parameters identification using Genetic Algorithms for varying flux levels 2008,	1.8	13 13 13

326	High speed drives review: Machines, converters and applications 2016,		13
325	Assessment of cooling methods for increased power density in electrical machines 2016,		13
324	. IEEE Transactions on Industrial Electronics, 2020 , 67, 1728-1738	8.9	13
323	. IEEE Transactions on Industry Applications, 2018 , 54, 4080-4090	4.3	12
322	. IEEE Transactions on Industrial Electronics, 2018 , 65, 4483-4491	8.9	12
321	CFD modelling of an entire synchronous generator for improved thermal management 2012,		12
320	Identification of Induction Machine Electrical Parameters Using Genetic Algorithms Optimization 2008 ,		12
319	Electrical Machines for the More Electric Aircraft: Partial Discharges Investigation. <i>IEEE Transactions on Industry Applications</i> , 2021 , 57, 1389-1398	4.3	12
318	An Analytical Subdomain Model for Dual-Rotor Permanent Magnet Motor With Halbach Array. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-16	2	12
317	. IEEE Transactions on Industrial Electronics, 2021 , 68, 5100-5111	8.9	12
317	. IEEE Transactions on Industrial Electronics, 2021, 68, 5100-5111 Investigation of AC Copper and Iron Losses in High-Speed High-Power Density PMSM 2018,	8.9	12
		8.9 4·3	
316	Investigation of AC Copper and Iron Losses in High-Speed High-Power Density PMSM 2018 ,		12
316	Investigation of AC Copper and Iron Losses in High-Speed High-Power Density PMSM 2018 , . IEEE Transactions on Industry Applications, 2017 , 53, 2906-2914 Induction-Machine-Based Starter/Generator Systems: Techniques, Developments, and Advances.	4.3	12
316 315 314	Investigation of AC Copper and Iron Losses in High-Speed High-Power Density PMSM 2018, . IEEE Transactions on Industry Applications, 2017, 53, 2906-2914 Induction-Machine-Based Starter/Generator Systems: Techniques, Developments, and Advances. IEEE Industrial Electronics Magazine, 2020, 14, 4-19 Global design optimization strategy of a synchronous reluctance machine for light electric vehicles	4.3	12 11 11
316 315 314 313	Investigation of AC Copper and Iron Losses in High-Speed High-Power Density PMSM 2018, . IEEE Transactions on Industry Applications, 2017, 53, 2906-2914 Induction-Machine-Based Starter/Generator Systems: Techniques, Developments, and Advances. IEEE Industrial Electronics Magazine, 2020, 14, 4-19 Global design optimization strategy of a synchronous reluctance machine for light electric vehicles 2016,	4.3	12 11 11
316 315 314 313 312	Investigation of AC Copper and Iron Losses in High-Speed High-Power Density PMSM 2018, . IEEE Transactions on Industry Applications, 2017, 53, 2906-2914 Induction-Machine-Based Starter/Generator Systems: Techniques, Developments, and Advances. IEEE Industrial Electronics Magazine, 2020, 14, 4-19 Global design optimization strategy of a synchronous reluctance machine for light electric vehicles 2016, Radial force control of multi-sector permanent magnet machines 2016,	4.3	12 11 11 11

308	Diagnosis of incipient faults in PMSMs with coaxially insulated windings 2013,		11
307	A Methodology to Remove Stator Skew in SmallMedium Size Synchronous Generators via Innovative Damper Cage Designs. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 4296-4307	8.9	11
306	. IEEE Transactions on Industrial Electronics, 2020 , 67, 2607-2617	8.9	11
305	. IEEE Transactions on Industrial Electronics, 2021 , 68, 2919-2930	8.9	11
304	Rotor Design Optimization of Squirrel Cage Induction Motor - Part I: Problem Statement. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 1271-1279	5.4	11
303	. IEEE Transactions on Industrial Electronics, 2017 , 64, 2468-2475	8.9	10
302	. IEEE Transactions on Industry Applications, 2019 , 55, 3649-3659	4.3	10
301	Comprehensive Monitoring of Electrical Machine Parameters Using an Integrated Fiber Bragg Grating-Based Sensor System. <i>Journal of Lightwave Technology</i> , 2018 , 36, 1046-1051	4	10
300	A semi-flooded cooling for a high speed machine: Concept, design and practice of an oil sleeve 2017 ,		10
299	2015,		10
			10
298	A dual two-level inverter with a single source for open end winding induction motor drive application 2015 ,		10
298 297	A dual two-level inverter with a single source for open end winding induction motor drive		
	A dual two-level inverter with a single source for open end winding induction motor drive application 2015 ,		10
297	A dual two-level inverter with a single source for open end winding induction motor drive application 2015, Novel fault tolerant design of flux switching machines 2010, Weight optimisation of a surface mount permanent magnet synchronous motor using genetic		10
297 296	A dual two-level inverter with a single source for open end winding induction motor drive application 2015, Novel fault tolerant design of flux switching machines 2010, Weight optimisation of a surface mount permanent magnet synchronous motor using genetic algorithms and a combined electromagnetic-thermal co-simulation environment 2011, Trade-off analysis and design of a high power density PM machine for flooded industrial pump	8.9	10
297 296 295	A dual two-level inverter with a single source for open end winding induction motor drive application 2015, Novel fault tolerant design of flux switching machines 2010, Weight optimisation of a surface mount permanent magnet synchronous motor using genetic algorithms and a combined electromagnetic-thermal co-simulation environment 2011, Trade-off analysis and design of a high power density PM machine for flooded industrial pump 2016,	8.9 7.6	10 10 10
297 296 295 294	A dual two-level inverter with a single source for open end winding induction motor drive application 2015, Novel fault tolerant design of flux switching machines 2010, Weight optimisation of a surface mount permanent magnet synchronous motor using genetic algorithms and a combined electromagnetic-thermal co-simulation environment 2011, Trade-off analysis and design of a high power density PM machine for flooded industrial pump 2016, . IEEE Transactions on Industrial Electronics, 2020, 67, 2667-2677 4-MW Class High-Power-Density Generator for Future Hybrid-Electric Aircraft. IEEE Transactions on		10 10 10 10 10

290	Thermal analysis of fault-tolerant electrical machines for more electric aircraft applications. <i>Journal of Engineering</i> , 2018 , 2018, 461-467	0.7	9
289	Radial force control for triple three-phase sectored SPM machines. Part II: Open winding fault tolerant control 2017 ,		9
288	An Optimized Bi-directional, Wide Speed Range Electric Starter-Generator for Aerospace Application 2014 ,		9
287	Fault tolerant winding design 🖟 compromise between losses and fault tolerant capability 2012 ,		9
286	Considerations for the design of a tubular motor for an aerospace application 2011,		9
285	Investigation of induction machine phase open circuit faults using a simplified equivalent circuit model 2008 ,		9
284	Integrated Machine design for Electro Mechanical Actuation 2007,		9
283	Fault-Tolerant Brushless DC Motor Drive For Electro-Hydrostatic Actuation System In Aerospace Application. <i>Conference Record - IAS Annual Meeting (IEEE Industry Applications Society)</i> , 2006 ,		9
282	Four-Degree-of-Freedom Overmodulation Strategy for Five-Phase Space Vector Pulsewidth Modulation. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2021 , 9, 1578-1590	5.6	9
281	. IEEE Transactions on Power Electronics, 2022 , 37, 749-760	7. 2	9
280	Eddy Current Losses Analysis and Optimization Design of Litz-Wire Windings for Air-Core Compulsators. <i>IEEE Transactions on Plasma Science</i> , 2019 , 47, 2532-2538	1.3	8
279	High-Speed Electric Drives: A Step Towards System Design. <i>IEEE Open Journal of the Industrial Electronics Society</i> , 2020 , 1, 10-21	3.6	8
278	The Role of Neural Networks in Predicting the Thermal Life of Electrical Machines. <i>IEEE Access</i> , 2020 , 8, 40283-40297	3.5	8
277	Performance Enhancement of Direct Torque-Controlled Permanent Magnet Synchronous Motor with a Flexible Switching Table. <i>Energies</i> , 2020 , 13, 1907	3.1	8
276	2016,		8
275	Damper cage loss reduction and no-load voltage THD improvements in salient-pole synchronous generators 2016 ,		8
274	Comparative design analysis of Permanent Magnet rotor topologies for an aircraft starter-generator 2014 ,		8
273	. IEEE Transactions on Industry Applications, 2017 , 53, 5405-5414	4.3	8

272	End barrier shape optimizations and sensitivity analysis of synchrnous reluctance machines 2015,		8
271	Mechanical and thermal design of an aeroengine starter/generator 2015,		8
270	Permanent Magnet Starter-Generator for Aircraft Application 2014,		8
269	Analytical modeling of a vertically distributed winding configuration for Fault Tolerant Permanent Magnet Machines to suppress inter-turn short circuit current limiting 2011 ,		8
268	Fault-tolerant electrical machine design within a rotorcraft actuation drive system optimisation 2012 ,		8
267	High Torque Density PM Machines for High Performance Operation 2007,		8
266	The impact of matrix converter technology on motor design for an integrated flight control surface actuation system		8
265	Rectangular and Random Conductors: AC Losses Evaluations and Manufacturing Considerations 2020 ,		8
264	Reduced Order Lumped Parameter Thermal Network for Dual Three-Phase Permanent Magnet Machines 2019 ,		8
263	Fixed switching frequency predictive control of an asymmetric source dual inverter system with a floating bridge for multilevel operation. <i>IET Power Electronics</i> , 2019 , 12, 450-457	2.2	8
262	High Torque Density Torque Motor With Hybrid Magnetization Pole Arrays for Jet Pipe Servo Valve. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 2133-2142	8.9	8
261	. IEEE Transactions on Industrial Electronics, 2020 , 67, 4315-4325	8.9	8
260	Post-Fault Operation of Bearingless Multisector SPM Machines by Space Vector Control. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 4168-4177	7.2	8
259	The Influence of Stator Material on the Power Density and Iron Loss of a High-Performace Starter-Generator for More Electric Aircraft 2018 ,		8
258	Challenges of the Optimization of a High-Speed Induction Machine for Naval Applications. <i>Energies</i> , 2019 , 12, 2431	3.1	7
257	Electrothermal Combined Optimization on Notch in Air-Cooled High-Speed Permanent-Magnet Generator. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-10	2	7
256	Design Considerations for the Tooth Shoe Shape for High-Speed Permanent Magnet Generators. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	7
255	. IEEE Transactions on Energy Conversion, 2020 , 35, 1289-1300	5.4	7

254	Position control study of a bearingless multi-sector permanent magnet machine 2017,		7	
253	2016,		7	
252	Coupling calculation and analysis of three-dimensional temperature and fluid field for high-power high-speed permanent magnet machine. <i>IET Electric Power Applications</i> , 2019 , 13, 820-825	1.8	7	
251	Radial force control for triple three-phase sectored SPM machines. Part I: Machine model 2017,		7	
250	Comparison of multi-physics optimization methods for high speed synchrnous reluctance machines 2015 ,		7	
249	Design considerations for high performance traction machines: Aiming for the FreedomCar 2020 targets 2015 ,		7	
248	The electromagnetic design of a high speed, 45kW, switched reluctance machine having a novel rotor geometry for aerospace application 2014 ,		7	
247	Mechanical and thermal management design of a motor for an aircraft wheel actuator 2014,		7	
246	Loading effects on saliency based sensorless control of PMSMs 2009,		7	
245	A 5-Phase Fault-Tolerant Brushless Permanent Magnet Motor Drive for an Aircraft Thin Wing Surface Actuator 2007 ,		7	
244	Highly Ordered BN? B N? Stacking Structure for Improved Thermally Conductive Polymer Composites. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000627	6.4	7	
243	Reliability vs. Performances of Electrical Machines: Partial Discharges Issue 2019 ,		7	
242	. IEEE Transactions on Industrial Electronics, 2020 , 67, 1844-1854	8.9	7	
241	. IEEE Transactions on Industrial Electronics, 2021 , 68, 7535-7544	8.9	7	
240	Rotor Design Optimization of Squirrel Cage Induction Motor - Part II: Results Discussion. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 1280-1288	5.4	7	
239	. IEEE Transactions on Industrial Electronics, 2017 , 64, 3548-3556	8.9	6	
238	Self-Excitation and Energy Recovery of Air-Core Compulsators. <i>IEEE Transactions on Plasma Science</i> , 2017 , 45, 1168-1174	1.3	6	
237	Radial force control of Multi-Sector Permanent Magnet machines considering radial rotor displacement 2017 ,		6	

236	Comparative Study on Two Modular Spoke-Type PM Machines for In-Wheel Traction Applications. <i>IEEE Transactions on Energy Conversion</i> , 2019 , 34, 2137-2147	5.4	6
235	Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-7	2	6
234	Simplified Damper Cage Circuital Model and Fast Analytical Numerical Approach for the Analysis of Synchronous Generators. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 8361-8371	8.9	6
233	A review on turn-turn short circuit fault management 2015,		6
232	Rotor UMP characteristics and vibration properties in synchronous generator due to 3D static air-gap eccentricity faults. <i>IET Electric Power Applications</i> , 2020 , 14, 961-971	1.8	6
231	2016,		6
230	Analysis of induction machine: Comparison of modelling techniques 2017,		6
229	Multistress characterization of insulation aging mechanisms in aerospace electric actuators 2015,		6
228	High speed permanent magnet machine design with minimized stack-length under electromagnetic and mechanical constraints. <i>International Journal of Applied Electromagnetics and Mechanics</i> , 2014 , 46, 95-109	0.4	6
227	Performance evaluation of converter topologies for high speed Starter/Generator in aircraft applications 2014 ,		6
226	High speed solid rotor induction machine: Analysis and performances 2014,		6
225	Design considerations for an outer rotor, field wound, flux switching machine 2012,		6
224	Aerospace actuator design: A comparative analysis of Permanent Magnet and Induction Motor configurations 2012 ,		6
223	A combined electromagnetic and thermal optimisation of an aerospace electric motor 2010 ,		6
222	Operation of an induction motor with an open circuit fault by controlling the zero sequence voltage 2009 ,		6
221	Rating issues in fault tolerant PMSM 2009 ,		6
220	. IEEE Transactions on Industry Applications, 2020 , 56, 1485-1494	4.3	6
219	. IEEE Transactions on Energy Conversion, 2020 , 1-1	5.4	6

218	Comparative Analysis of AC losses with round magnet wire and Litz wire winding of a High Speed PM Machine 2019 ,		6
217	A Novel Thermal Network Model Used for Temperature Calculation and Analysis on Brushless Doubly-Fed Generator With Winding Encapsulating Structure. <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 1473-1483	4.3	6
216	. IEEE Transactions on Industrial Electronics, 2021 , 68, 5638-5649	8.9	6
215	. IEEE/ASME Transactions on Mechatronics, 2021 , 26, 1129-1139	5.5	6
214	. IEEE Transactions on Transportation Electrification, 2021 , 7, 793-803	7.6	6
213	Optimised Design of Permanent Magnet Assisted Synchronous Reluctance Machines for Household Appliances. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	6
212	2018,		6
211	The Influence of Strands and Bundle-Level Arrangements of Magnet Wires on AC Losses in the Winding of High Espeed Traction Machine 2018 ,		6
210	Design Optimization of a Short-Term Duty Electrical Machine for Extreme Environment. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 9784-9794	8.9	5
209	Braking Torque Compensation Strategy and Thermal Behavior of a Dual Three-Phase Winding PMSM During Short-Circuit Fault 2019 ,		5
208	Novel 24-slots14-poles fractional-slot concentrated winding topology with low-space harmonics for electrical machine. <i>Journal of Engineering</i> , 2019 , 2019, 3784-3788	0.7	5
207	A topology selection consideration of electrical machines for traction applications: towards the FreedomCar 2020 targets 2015 ,		5
206	Analysis and Design of a Magnetically Levitated Planar Motor With Novel Multilayer Windings. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-9	2	5
205	Design and testing of electromechanical actuator for aerospace applications 2018,		5
204	Development of an Axial Flux MEMS BLDC Micromotor with Increased Efficiency and Power Density. <i>Energies</i> , 2015 , 8, 6608-6626	3.1	5
203	Enhanced Cooling for an Electric Starter-Generator for Aerospace Application 2014,		5
202	Thermal modelling and selection of a high speed permanent magnet surface mount electrical machine 2012 ,		5
201	Use of an artificial neural network for current derivative estimation 2013,		5

200	A Brushless DC motor design for an aircraft electro-hydraulic actuation system 2011 ,		5
199	Operating induction motor drives with turn-to-turn faults 2005,		5
198	2020,		5
197	Control-Winding Direct Power Control Strategy for Five-Phase Dual-Stator Winding Induction Generator DC Generating System. <i>IEEE Transactions on Transportation Electrification</i> , 2020 , 6, 73-82	7.6	5
196	Power Devices Aging Equalization of Interleaved DCDC Boost Converters via Power Routing. <i>IEEE Journal of Emerging and Selected Topics in Industrial Electronics</i> , 2020 , 1, 91-101	2.6	5
195	Integrated output filter inductor for permanent magnet motor drives 2016,		5
194	Structural design optimization of a high speed synchronous reluctance machine 2016,		5
193	Evaluation of saliency tracking as an alternative for health monitoring in PMSM-drives under non-stationary conditions. <i>IET Electric Power Applications</i> , 2016 , 10, 284-293	1.8	5
192	A Thermal Modeling Approach and Experimental Validation for an Oil Spray-Cooled Hairpin Winding Machine. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 7, 2914-2926	7.6	5
191	Commercial Aircraft Electrification durrent State and Future Scope. <i>Energies</i> , 2021 , 14, 8381	3.1	5
190	Research on the Compensation Matching Design and Output Performance for Two-Axis-Compensated Compulsators. <i>IEEE Transactions on Plasma Science</i> , 2019 , 47, 2445-2451	1.3	4
189	Short term duty electrical machines 2016 ,		4
188	Computation of Wound Rotor Induction Machines Based on Coupled Finite Elements and Circuit Equation Under a First Space Harmonic Approximation. <i>IEEE Transactions on Magnetics</i> , 2016 , 52, 1-4	2	4
187	Influence of Slot Combination on Performance of Brushless Doubly Fed Generator With Hybrid Rotor. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-6	2	4
186	Winding concepts for ultra reliable electrical machines 2014,		4
185	Evaluation of motor-drive segmentation strategies for fault-tolerance 2013,		4
184	Comparison of surface mounted and uneven consequent-pole PM high-speed machines 2017,		4
183	Speed control for multi-three phase synchronous electrical motors in fault condition 2017,		4

182	2017,		4	
181	An investigation into the geometric parameters affecting field uniformity in four pole magnetisers. <i>International Journal of Applied Electromagnetics and Mechanics</i> , 2015 , 48, 225-232	0.4	4	
180	2015,		4	
179	Design and Modeling of a 45kW, Switched Reluctance Starter-Generator for a Regional Jet Application 2014 ,		4	
178	Design aspects of a high torque density machine for an aerospace traction application 2014,		4	
177	Fault tolerant winding technology comparison for Flux Switching Machine 2010,		4	
176	A power converter for fault tolerant machine development in aerospace applications 2008,		4	
175	Fault-Tolerance Analysis of Multi-Phase Single Sided Matrix Converter for Brushless DC Drives 2007 ,		4	
174	An investigation into the suitability of unbalanced motor operation, the Eh-star-circuit for stray load loss measurement		4	
173	Eccentric position diagnosis of static eccentricity fault of external rotor permanent magnet synchronous motor as an in-wheel motor. <i>IET Electric Power Applications</i> , 2020 , 14, 2263-2272	1.8	4	
172	. IEEE Transactions on Industrial Electronics, 2020 , 1-1	8.9	4	
171	Axial position estimation of conical shaped motor for green taxiing application 2016,		4	
170	Novel integrative options for passive filter inductor in high speed AC drives 2016,		4	
169	Topology investigation on high speed PM generator with back wound windings 2016,		4	
168	The Influence of Winding Location in Flux-Switching Permanent-Magnet Machines. <i>IEEE Transactions on Magnetics</i> , 2019 , 55, 1-5	2	4	
167	An Analytical-Numerical Approach to Model and Analyse Squirrel Cage Induction Motors. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 421-430	5.4	4	
166	High Speed Synchronous Reluctance Machines: Modeling, Design and Limits. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	4	
165	Fast and Simple Tuning Rules of Synchronous Reference Frame Proportional-Integral Current Controller. <i>IEEE Access</i> , 2021 , 9, 22156-22170	3.5	4	

164	A Novel Flux Barrier Parametrization for Synchronous Reluctance Machines. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	4
163	Design Considerations of Fault-Tolerant Electromechanical Actuator Systems for More Electric Aircraft (MEA) 2018 ,		4
162	Performance Analysis of PMSM for High-Speed Starter-Generator System 2018 ,		4
161	2018,		4
160	CQICO and Multiobjective Thermal Optimization for High-Speed PM Generator. <i>IEEE Transactions on Magnetics</i> , 2017 , 1-1	2	3
159	. IEEE Transactions on Plasma Science, 2017 , 45, 1387-1393	1.3	3
158	Single-Phase Open-Circuit Fault Operation of Bearingless Multi-Sector PM Machines 2019,		3
157	Optimized Sizing of IPM Machines for Automotive Traction Application 2019,		3
156	Permanent magnet machine design trade-offs to achieve sensorless control at high load. <i>COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering</i> , 2015 , 34, 324-343	0.7	3
155	Electric drive systems with long feeder cables. IET Electric Power Applications, 2020, 14, 16-30	1.8	3
154	Comparison of electrical machines for use with a high-horsepower marine engine turbocharger 2018 ,		3
153	Design optimization of Halbach array permanent magnet motor to achieve sensorless performance using genetic algorithm. <i>COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering</i> , 2016 , 35, 1741-1759	0.7	3
152	Modeling and analysis of eddy current losses in permanent magnet machines with multi-stranded bundle conductors. <i>Mathematics and Computers in Simulation</i> , 2016 , 130, 48-56	3.3	3
151	Dual-Rotor Permanent Magnet Motor for Electric Superbike 2019 ,		3
150	Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry. <i>Journal of Engineering</i> , 2019 , 2019, 3831-3835	0.7	3
149	Use of optical fibres for multi-parameter monitoring in electrical AC machines 2017,		3
148	2017,		3
147	Accuracy improvement of carrier signal injection sensorless control for IPMSM in consideration of inverter nonlinearity 2015 ,		3

(2016-2015)

146	State space model of a modular speed-drooped system for high reliability integrated modular motor drives 2015 ,		3
145	Analysis and Optimization of a Double-Sided Air-Cored Tubular Generator. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	3
144	Selection of slot-pole combination of permanent magnet machines for aircraft actuation 2015,		3
143	Thermal-Electromagnetic Analysis of Solid Rotor Induction Machine 2014 ,		3
142	2011,		3
141	Analysis of the end winding heat transfer variation with altitude in electric motors 2009,		3
140	A fault-tolerant control scheme for a dual flux-switching permanent magnet motor drive 2011,		3
139	Electrical machine design for optimal self- sensing properties of SPMSMs 2012,		3
138	Non-linear dynamic modelling of vector controlled PM synchronous machines 2005,		3
137	Evaluation of a vector controlled induction motor drive using the dynamic magnetic circuit model		3
136	Evaluation and modelling of cross saturation due to leakage flux in vector controlled induction machines	;	3
135	Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison. Proceedings of the IEEE, 2022 , 1-18	14.3	3
134	Hybrid Recurrent Neural Network Architecture-Based Intention Recognition for Human-Robot Collaboration. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	3
133	Optimization and Analysis of a High Power Density and Fault Tolerant Starter G enerator for Aircraft Application. <i>Energies</i> , 2021 , 14, 113	3.1	3
132	Open-Circuit Fault Control Techniques for Bearingless Multisector Permanent Magnet Synchronous Machines. <i>IEEE Transactions on Industry Applications</i> , 2021 , 57, 2527-2536	4.3	3
131	Modelling short- and open-circuit faults in permanent magnet synchronous machines using Modelica. <i>Journal of Engineering</i> , 2016 , 2016, 73-79	0.7	3
130	High specific torque motor for propulsion system of aircraft 2016 ,		3
129	Closed-form approach for predicting overvoltage transients in cable-fed PWM motor drives for MEA 2016 ,		3

128	Active Magnetic Bearing system design featuring a predictive current control 2016,		3
127	Sensitivity Analysis of Machine Components Thermal Properties Effects on Winding Temperature 2019 ,		3
126	Enhanced Active Disturbance Rejection Current Controller for Permanent Magnet Synchronous Machines Operated at Low Sampling Time Ratio. <i>IEEE Journal of Emerging and Selected Topics in Industrial Electronics</i> , 2021 , 1-1	2.6	3
125	Segmented Hairpin Topology for Reduced Losses at High Frequency Operations. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 1-1	7.6	3
124	2018,		3
123	Open-Circuit Fault Tolerant Study of Bearingless Multi-Sector Permanent Magnet Machines 2018,		3
122	Synchronous Reluctance Motor Iron Losses: Analytical Model and Optimization 2018,		3
121	Novel Core Designs to Miniaturise Passive Magnetic Components 2018 ,		3
120	Homothetic Design in Synchronous Reluctance Machines and Effects on Torque Ripple. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 2195-2205	5.4	3
119	Experimental Statistical Method Predicting AC Losses on Random Windings and PWM Effect Evaluation. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 2287-2296	5.4	3
118	How non-conventional machining affects the surface integrity and magnetic properties of non-oriented electrical steel. <i>Materials and Design</i> , 2021 , 210, 110051	8.1	3
117	Hairpin Windings: An Opportunity for Next-Generation E-Motors in Transportation. <i>IEEE Industrial Electronics Magazine</i> , 2021 , 2-10	6.2	3
116	Design optimization of integrated rotor-less inductors for high-speed AC drive applications 2017,		2
115	2017,		2
114	Fully-integrated high-speed IM for improving high-power marine engines. <i>IET Electric Power Applications</i> , 2019 , 13, 148-153	1.8	2
113	Vibration measurement of electrical machines using integrated fibre Bragg gratings 2015,		2
112	Control Integrated Studies on High Speed Permanent Magnetic Generators System. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	2
111	Development and design of a high performance traction machine for the FreedomCar 2020 traction machine targets 2016 ,		2

110	2016,	2
109	Torque Ripple Investigation in Squirrel Cage Induction Machines 2019 ,	2
108	A hybrid sensorless control solution for an automotive drive application 2017,	2
107	Design and control of segmented triple three-phase SPM machines for fault tolerant drives 2017 ,	2
106	Comparative study and optimal design of alternative PM configuration transverse flux linear machine 2017 ,	2
105	Speed control with load sharing capabilities for multi-three phase synchronous motors 2017,	2
104	Design optimization of integrated rotational inductor for high-speed AC drive applications 2017,	2
103	A hybrid analytical-numerical approach for the analysis of salient-pole synchronous generators with a symmetrical damper cage 2017 ,	2
102	Realising robust low speed sensorless PMSM control using current derivatives obtained from standard current sensors 2017 ,	2
101	Magnetically Geared Induction Machines. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4 2	2
100	FEA based thermal analysis of various topologies for Integrated Motor Drives (IMD) 2015,	2
99	Optimization on the tooth top shape of a high speed permanent magnetic generator 2015,	2
98	Comparison of different methods for incipient fault diagnosis in PMSMs with coaxial insulated windings 2014 ,	2
97	2012,	2
96	Detection of inter-coil short circuits in the stator winding of a PM machine by using saliency tracking schemes 2011 ,	2
95	Permanent magnet motor design optimisation for sensorless control 2011 ,	2
94	Design, modelling and testing of a high speed induction machine drive 2012 ,	2
93	AC loss Analysis in Winding of Electrical Machines with varying Strands-in-hand and Bundle Shapes 2020 ,	2

92	Significance of Anisotropic Thermal Expansion in High Speed Electric Machines Employing NdFeB Permanent Magnets. <i>Energies</i> , 2021 , 14, 7558	3.1	2
91	Open-Circuit Air-Gap Magnetic Field Calculation of Interior Permanent Magnet Synchronous Motor With V-Shaped Segmented Skewed Poles Using Hybrid Analytical Method. <i>IEEE Transactions on Magnetics</i> , 2021 , 1-1	2	2
90	Controlling DC permeability in cast steels. Journal of Magnetism and Magnetic Materials, 2017, 429, 79	- 85 .8	2
89	Feasibility Design Study of High-Performance, High-Power-Density Propulsion Motor for Middle-Range Electric Aircraft 2020 ,		2
88	Open and Closed Rotor Slots Design of Single and Double Cages Induction Motor 2021,		2
87	Hairpin Windings: Sensitivity Analysis and Guidelines to Reduce AC Losses 2021,		2
86	Integrated Motor Drive: Mass and Volume Optimization of the Motor with an Integrated Filter Inductor. <i>Energies</i> , 2021 , 14, 4564	3.1	2
85	Modeling of Classical Synchronous Generators Using Size-Efficient Lookup Tables With Skewing Effect. <i>IEEE Access</i> , 2019 , 7, 174551-174561	3.5	2
84	Enhancing the Torque Density of Conventional PM-SynRel Machine with Hybrid Flux Barrier 2019,		2
83	Multi-physics Design Optimisation of PM-assisted Synchronous Reluctance Motor for Traction Application 2019 ,		2
82	Active Thermal Control for Power Converters in Modular Winding Permanent Magnet Synchronous Motor 2019 ,		2
81	. IEEE Transactions on Industrial Electronics, 2020 , 67, 4391-4401	8.9	2
80	. IEEE Transactions on Industrial Electronics, 2021, 68, 9070-9080	8.9	2
79	. IEEE Transactions on Energy Conversion, 2021 , 36, 547-559	5.4	2
78	. IEEE Transactions on Energy Conversion, 2021 , 36, 23-35	5.4	2
77	Squirrel Cage Induction Motor: A Design-Based Comparison Between Aluminium and Copper Cages. <i>IEEE Open Journal of Industry Applications</i> , 2021 , 2, 110-120	4.7	2
76	Lifetime Estimation of Enameled Wires Under Accelerated Thermal Aging Using Curve Fitting Methods. <i>IEEE Access</i> , 2021 , 9, 18993-19003	3.5	2
75	High Speed Synchronous Reluctance Machines: Materials Selection and Performance Boundaries. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 1-1	7.6	2

(2009-2018)

74	Performance Comparison of Doubly Salient Reluctance Generators for High-Voltage DC Power System of More Electric Aircraft 2018 ,		2
73	Analysis and Design of Dual-Rotor Synchronous Reluctance Machine. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2021 , 9, 4376-4383	5.6	2
72	Modeling and Analysis in Trajectory Tracking Control for Wheeled Mobile Robots with Wheel Skidding and Slipping: Disturbance Rejection Perspective. <i>Actuators</i> , 2021 , 10, 222	2.4	2
71	Neural Network aided PMSM multi-objective design and optimization for more-electric aircraft applications. <i>Chinese Journal of Aeronautics</i> , 2021 ,	3.7	2
70	Active Thermal Control for Modular Power Converters in Multi-Phase Permanent Magnet Synchronous Motor Drive System. <i>IEEE Access</i> , 2021 , 9, 7054-7063	3.5	2
69	Simplified Analytical Machine Sizing for Surface Mounted Permanent Magnet Machines 2019,		1
68	Numerical investigations of convective phenomena of oil impingement on end-windings. <i>Journal of Engineering</i> , 2019 , 2019, 4022-4026	0.7	1
67	Distributed speed control for multi-three phase electrical motors with improved power sharing capability 2017 ,		1
66	Magnetic Field and Torque Output of Packaged Hydraulic Torque Motor. <i>Energies</i> , 2018 , 11, 134	3.1	1
65	Development and structure of multi-DOF spherical induction motor 2018,		1
65	Development and structure of multi-DOF spherical induction motor 2018, . IEEE Transactions on Industry Applications, 2018, 54, 5760-5771	4.3	1
Ĭ		4.3	
64	. IEEE Transactions on Industry Applications, 2018 , 54, 5760-5771	4.3	1
64	. IEEE Transactions on Industry Applications, 2018, 54, 5760-5771 2019,	4.3	1
64 63 62	. IEEE Transactions on Industry Applications, 2018, 54, 5760-5771 2019, Performance improvement of simplified synchronous generators using an active power filter 2017,	4-3	1 1
64 63 62 61	. IEEE Transactions on Industry Applications, 2018, 54, 5760-5771 2019, Performance improvement of simplified synchronous generators using an active power filter 2017, Analysis and optimization of a double-sided air-cored tubular generator 2015,	4.3	1 1 1
64 63 62 61	. IEEE Transactions on Industry Applications, 2018, 54, 5760-5771 2019, Performance improvement of simplified synchronous generators using an active power filter 2017, Analysis and optimization of a double-sided air-cored tubular generator 2015, Solid rotor interior permanent magnet machines for high speed applications 2015, Development of a Modelica Library for Electro-Mechanical Actuator System Studies including Fault	4.3	1 1 1 1 1

56	A simplified model for induction machines with faults to aid the development of fault tolerant drives 2008 ,		1
55	Transient torque response improvement in presence of axial saturation due to skewing of rotor slots in induction motors		1
54	Integrated Damper Cage for THD Improvements of Variable Speed Salient-Pole Synchronous Generators for the More Electric Aircraft. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 1-1	7.6	1
53	Mechanical and thermal design of an aeroengine starter/generator		1
52	Electrical Machines for High Speed Applications with a Wide Constant-Power Region Requirement. Journal of International Conference on Electrical Machines and Systems, 2012 , 1, 274-281		1
51	Analysis of a Five-Phase PM Vernier Machine Topology with Two-Slot Pitch Winding 2020,		1
50	Calculation Model of Armature Reaction Magnetic Field of Interior Permanent Magnet Synchronous Motor with Segmented Skewed Poles. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	1
49	Advantages of a Double Three-Phase Winding Layout for a Dual Rotor E-Bike Motor Considering Third Current Harmonic Injection Technique 2020 ,		1
48	Hybrid Magnet Configuration to Reduce the Content of Rare Earth Elements in a PM-SynRel Machine 2020 ,		1
47	Analysis and Modelling of High Frequency Effects on Synchronous Generator Armature Conductors 2020 ,		1
46	Influence of Rotor Design on Electromagnetic Performance in Interior Permanent Magnet Machines 2020 ,		1
45	Multi-Sector Windings For Bearing Relief E-Machine: Saturation and Cross Coupling Effects 2020 ,		1
44	High Torque-Density In-Wheel Electrical Machine for an Electric Bus 2016 ,		1
43	Thermal Barrier for High-Voltage Permanent Magnet Synchronous Motor with Air-cooling Hybrid Ventilation Systems 2019 ,		1
42	The potential of exploiting non-symmetric structures in electrical machines 2019,		1
41	Fault-Tolerant Electrical Machines for Transport Applications 2019 ,		1
40	Simplified Lumped Parameter Thermal Network for Short-Duty Dual Three-Phase Permanent Magnet Machines 2019 ,		1
39	Smart Current Limitation Technique for a Multiphase Bearingless Machine with Combined Winding System 2019 ,		1

38	Rotor UMP & Mechanical Response in HSPMSM in Typical Running Conditions 2019,		1
37	Trade-off Study of a High Power Density Starter-Generator for Turboprop Aircraft System 2019 ,		1
36	Consideration on Eddy Current Reduction Techniques for Solid Materials Used in Unconventional Magnetic Circuits. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 4870-4879	8.9	1
35	Improved Thermal Modelling and Experimental Validation of Oil-Flooded High Performance Machines with Slot-Channel Cooling. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 1-1	7.6	1
34	On Torque Improvement by Current Harmonic Injection in Isotropic and Anisotropic Multi-Phase Machines. <i>IEEE Journal of Emerging and Selected Topics in Industrial Electronics</i> , 2021 , 1-1	2.6	1
33	Open and Short Circuit Post-Fault Control Strategies for Multi-Three-Phase Interior Permanent Magnet Machines. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	1
32	Electrical Machine Rotor Shielding for Low Cost Electrical Drive 2018,		1
31	Design of an Integrated Inductor for 45kW Aerospace Starter-Generator 2018 ,		1
30	Response to Discussion of A Modular Speed-Drooped System for High Reliability Integrated Modular Motor Drives [IEEE Transactions on Industry Applications, 2018, 54, 4994-4995]	4.3	1
29	Analysis and Performance of Five-Phase Piecewise-Random-Switching-Frequency Space Vector Pulse Width Modulation. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 2339-2347	5.4	1
28	Electrical Machine Slot Thermal Condition Effects on Back-Iron Extension Thermal Benefits. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 7, 2927-2938	7.6	1
27	A Novel Current Limitation Technique Exploiting the Maximum Capability of Power Electronic Inverter and Bearingless Machine. <i>IEEE Transactions on Industry Applications</i> , 2021 , 1-1	4.3	1
26	Modular Power Sharing Control for Bearingless Multi-Three Phase Permanent Magnet Synchronous Machine. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	1
25	A Low-Complexity Modulated Model Predictive Torque and Flux Control Strategy for PMSM Drives without Weighting Factor. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2022 , 1-1	5.6	1
24	Analytical Methodology for Eddy Current Loss Simulation in Armature Windings of Synchronous Electrical Machines With Permanent Magnets. <i>IEEE Transactions on Industrial Electronics</i> , 2022 , 69, 9761	-§ 7 70	1
23	On the Use of Topology Optimization for Synchronous Reluctance Machines Design. <i>Energies</i> , 2022 , 15, 3719	3.1	1
22	Electromechanical Characteristics Analysis under DSISC Fault in Synchronous Generators. <i>Machines</i> , 2022 , 10, 432	2.9	1
21	Performance Entitlement by Using Novel High Strength Electrical Steels and Copper Alloys for High-Speed Laminated Rotor Induction Machines. <i>Electronics (Switzerland)</i> , 2022 , 11, 210	2.6	О

20	A Comprehensive Design Guideline of Hairpin Windings for High Power Density Electric Vehicle Traction Motors. <i>IEEE Transactions on Transportation Electrification</i> , 2022 , 1-1	7.6	О
19	Improved V-shaped interior permanent magnet rotor topology with inward-extended bridges for reduced torque ripple. <i>IET Electric Power Applications</i> , 2020 , 14, 2404-2411	1.8	O
18	Impact of Static Air-Gap Eccentricity on Thermal Responses of Stator Winding Insulation in Synchronous Generators. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	O
17	Characteristic analysis and direct measurement for air gap magnetic field of external rotor permanent magnet synchronous motors in electric vehicles. <i>IET Electric Power Applications</i> , 2020 , 14, 1784-1794	1.8	O
16	Femtocore: An Application Specific Processor for Vertically Integrated High Performance Real-Time Controls. <i>IEEE Open Journal of the Industrial Electronics Society</i> , 2021 , 1-1	3.6	O
15	A PMSM with Enhanced Anisotropic Rotor Configuration for Sensorless Operations. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	O
14	A Scalable System Architecture for High-Performance Fault Tolerant Machine Drives. <i>IEEE Open Journal of the Industrial Electronics Society</i> , 2021 , 2, 428-440	3.6	O
13	Torque Limiters for Aerospace Actuator Application. <i>Energies</i> , 2022 , 15, 1467	3.1	O
12	Review on the Traditional and Integrated Passives: State-of-the-Art Design and Technologies. <i>Energies</i> , 2022 , 15, 88	3.1	O
11	Advanced Materials for Extreme Environment Aerospace Actuators. <i>Materials Science Forum</i> , 2016 , 856, 119-124	0.4	
10	A fault tolerant single sided matrix converter for flight control actuation systems. <i>Journal of Zhejiang University: Science C</i> , 2012 , 13, 866-874		
9	Considerations for Manufacturing and Experimental Validation of a PM, Tubular Motor for a Matrix Converter Driven Aerospace Application. <i>Applied Mechanics and Materials</i> , 2013 , 416-417, 293-299	0.3	
8	Application of Actor-Critic Deep Reinforcement Learning Method for Obstacle Avoidance of WMR. <i>Lecture Notes in Electrical Engineering</i> , 2022 , 5485-5494	0.2	
7	Rotor Slot Design of Squirrel Cage Induction Motors with Improved Rated Efficiency and Starting Capability. <i>IEEE Transactions on Industry Applications</i> , 2022 , 1-1	4.3	
6	Effect of Multi-size Magnetic Powder Gradation on Magnetic Properties of Novel Composite Magnetic Materials for HSPMSM. <i>IEEE Transactions on Transportation Electrification</i> , 2022 , 1-1	7.6	
5	An Extended State Loop-Filter with Position Error Observer for Sensorless IPMSM Drives. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	
4	The Novel Singular-Perturbation-Based Adaptive Control with EModification for Cable Driven System. <i>Actuators</i> , 2021 , 10, 45	2.4	
3	Robust Adaptive Control Based on Variable Boundary for a Twin-Motor Cable Driven System. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	

Profiling the Eddy Current Losses Variations of High-Speed Permanent Magnet Machines in Plug-in Hybrid Electric Vehicles. *IEEE Transactions on Transportation Electrification*, **2022**, 1-1

7.6

Electromagnetic Torque Fluctuating Properties under Dynamic RISC Fault in Turbogenerators. *Energies*, **2022**, 15, 3821

3.1