
Leyre GÃ³mez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/943493/publications.pdf Version: 2024-02-01

LEVDE CÃ3MEZ

#	Article	IF	CITATIONS
1	Room temperature synthesis and characterization of novel lead-free double perovskite nanocrystals with a stable and broadband emission. Journal of Materials Chemistry C, 2021, 9, 158-163.	5.5	8
2	Photon Recycling in CsPbBr ₃ All-Inorganic Perovskite Nanocrystals. ACS Photonics, 2021, 8, 3201-3208.	6.6	10
3	Highly Stable Perovskite Supercrystals via Oil-in-Oil Templating. Nano Letters, 2020, 20, 5997-6004.	9.1	19
4	Direct Visualization and Determination of the Multiple Exciton Generation Rate. ACS Omega, 2020, 5, 21506-21512.	3.5	4
5	Bandgap Renormalization in Monolayer MoS ₂ on CsPbBr ₃ Quantum Dots via Charge Transfer at Room Temperature. Advanced Materials Interfaces, 2020, 7, 2000835.	3.7	8
6	Substitutional Doping of Yb ³⁺ in CsPbBr _{<i>x</i>} Cl _{3–<i>x</i>} Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 6413-6417.	3.1	9
7	Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2018, 10, 5984-5991.	8.0	27
8	Efficient carrier multiplication in CsPbI3 perovskite nanocrystals. Nature Communications, 2018, 9, 4199.	12.8	101
9	Measuring the practical particle-in-a-box: orthorhombic perovskite nanocrystals. European Journal of Physics, 2018, 39, 055501.	0.6	2
10	Allâ€Inorganic Perovskite Nanocrystals: Microscopy Insights in Structure and Optical Properties. Advanced Optical Materials, 2018, 6, 1800289.	7.3	24
11	Optical orientation and alignment of excitons in ensembles of inorganic perovskite nanocrystals. Physical Review B, 2018, 97, .	3.2	51
12	Uniform luminescent carbon nanodots prepared by rapid pyrolysis of organic precursors confined within nanoporous templating structures. Carbon, 2017, 117, 437-446.	10.3	91
13	Multiexciton Lifetime in All-Inorganic CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 1941-1947.	3.1	46
14	Hybridization of Single Nanocrystals of Cs ₄ PbBr ₆ and CsPbBr ₃ . Journal of Physical Chemistry C, 2017, 121, 19490-19496.	3.1	68
15	Color-stable water-dispersed cesium lead halide perovskite nanocrystals. Nanoscale, 2017, 9, 631-636.	5.6	113
16	Energy Transfer between Inorganic Perovskite Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 13310-13315.	3.1	106
17	Selective delivery of photothermal nanoparticles to tumors using mesenchymal stem cells as Trojan horses. RSC Advances, 2016, 6, 58723-58732.	3.6	16
18	Correction to Microfluidic Synthesis and Biological Evaluation of Photothermal Biodegradable Conner Sulfide Nanoparticles, ACS Applied Materials & amp: Interfaces, 2016, 8, 24982-24982	8.0	2

Leyre GÃ³mez

#	Article	IF	CITATIONS
19	Direct Observation of Band Structure Modifications in Nanocrystals of CsPbBr ₃ Perovskite. Nano Letters, 2016, 16, 7198-7202.	9.1	82
20	Near-infrared–actuated devices for remotely controlled drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1349-1354.	7.1	177
21	Scaled-up production of plasmonic nanoparticles using microfluidics: from metal precursors to functionalized and sterilized nanoparticles. Lab on A Chip, 2014, 14, 325-332.	6.0	83
22	Au–PLA nanocomposites for photothermally controlled drug delivery. Journal of Materials Chemistry B, 2014, 2, 409-417.	5.8	48
23	Plasmon-enhanced photocatalytic water purification. Physical Chemistry Chemical Physics, 2014, 16, 15111.	2.8	38
24	Temporal and spatial patterning of transgene expression by near-infrared irradiation. Biomaterials, 2014, 35, 8134-8143.	11.4	23
25	Evaluation of gold-decorated halloysite nanotubes as plasmonic photocatalysts. Catalysis Communications, 2014, 56, 115-118.	3.3	27
26	Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. Nanoscale, 2014, 6, 9230.	5.6	63
27	Morphological Tunability of the Plasmonic Response: From Hollow Gold Nanoparticles to Gold Nanorings. Journal of Physical Chemistry C, 2014, 118, 28804-28811.	3.1	26
28	Stability and biocompatibility of photothermal gold nanorods after lyophilization and sterilization. Materials Research Bulletin, 2013, 48, 4051-4057.	5.2	17
29	Oxy-fuel combustion of millimeter-sized coal char: Particle temperatures and NO formation. Fuel, 2013, 106, 72-78.	6.4	19
30	Enhancing of plasmonic photothermal therapy through heat-inducible transgene activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 646-656.	3.3	30
31	Laser-driven heterogeneous catalysis: efficient amide formation catalysed by Au/SiO2 systems. Green Chemistry, 2013, 15, 2043.	9.0	58
32	Facile synthesis of SiO2–Au nanoshells in a three-stage microfluidic system. Journal of Materials Chemistry, 2012, 22, 21420.	6.7	48
33	Comparative study of the synthesis of silica nanoparticles in micromixer–microreactor and batch reactor systems. Chemical Engineering Journal, 2011, 171, 674-683.	12.7	74