
Anita R Kongor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9434795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calix[4]pyrrole based scrupulous probe for track on of tryptophan: Host-guest interaction, in silico modeling and molecular docking insights. Chemical Physics, 2022, 554, 111426.	1.9	9
2	Development of tBu-phenyl Acetamide Appended Thiacalix[4]arene as "Turn-ON―Fluorescent Probe for Selective Recognition of Hg(II) Ions. Journal of Fluorescence, 2022, 32, 637-645.	2.5	6
3	Design of bi-pyrene functionalized oxacalixarene probe for ratiometric detection of Fe3+ and PO43- ions. Journal of Molecular Liquids, 2022, 350, 118601.	4.9	8
4	Pyrene functionalized oxacalix[4]arene architecture as dual readout sensor for expeditious recognition of cyanide anion. Journal of Fluorescence, 2022, 32, 1425-1433.	2.5	4
5	Calix[4]pyrrole Stabilized PdNPs as an Efficient Heterogeneous Catalyst for Enhanced Degradation of Water-Soluble Carcinogenic Azo Dyes. Catalysis Letters, 2021, 151, 548-558.	2.6	11
6	An oxacalix[4]arene-derived dual-sensing fluorescent probe for the relay recognition of Hg ²⁺ and S ^{2â^'} ions. New Journal of Chemistry, 2021, 45, 17902-17908.	2.8	2
7	Functionalized Silver Nanoparticles as Colorimetric and Fluorimetric Sensor for Environmentally Toxic Mercury Ions: An Overview. Journal of Fluorescence, 2021, 31, 635-649.	2.5	29
8	A highly selective anthraquinone appended oxacalixarene receptor for fluorescent ICT sensing of Fâ^' ions: an experimental and computational study. Journal of Chemical Sciences, 2020, 132, 1.	1.5	13
9	Structural motifs of oxacalix[4]arene for molecular recognition of nitroaromatic explosives: Experimental and computational investigations of host-guest complexes. Journal of Molecular Liquids, 2020, 306, 112809.	4.9	21
10	Colorimetric and electrochemical sensing of As(III) using calix[4]pyrrole capped gold nanoparticles and evaluation of its cytotoxic activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 98, 29-41.	1.6	14
11	Facile construction & modeling of a highly active thiacalixphenyl[4]arene-protected nano-palladium catalyst for various C–C cross-coupling reactions. New Journal of Chemistry, 2019, 43, 5611-5622.	2.8	3
12	Facile construction of calix[4]pyrrole-templated gold nanoparticles: computational insights and application for efficient reduction of 4-nitrophenol. Gold Bulletin, 2019, 52, 125-133.	2.4	4
13	Heterogeneous hydrogenation using stable and reusable calix[4]pyrrole fenced Pt nanoparticles and its mechanistic insight. Applied Surface Science, 2018, 437, 195-201.	6.1	7
14	Heck-type olefination and Suzuki coupling reactions using highly efficient oxacalix[4]arene wrapped nanopalladium catalyst. Journal of Saudi Chemical Society, 2018, 22, 558-568.	5.2	12
15	Sensing of Ce(<scp>iii</scp>) using di-naphthoylated oxacalix[4]arene <i>via</i> realistic simulations and experimental studies. New Journal of Chemistry, 2018, 42, 311-317.	2.8	18
16	Synthesis and modeling of calix[4]pyrrole wrapped Au nanoprobe for specific detection of Pb(II): Antioxidant and radical scavenging efficiencies. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 801-810.	3.9	24
17	Selective fluorescence sensing of Cu(II) ions using calix[4]pyrrole fabricated Ag nanoparticles: A spectroscopic and computational approach. Journal of Molecular Liquids, 2018, 269, 467-475.	4.9	13
18	Basketing nanopalladium into calix[4]pyrrole as an efficient catalyst for Mizoroki-Heck reaction. Arabian Journal of Chemistry, 2017, 10, 1125-1135.	4.9	14

ANITA R KONGOR

#	Article	IF	CITATIONS
19	A comparative study: Metal nanoparticles as fluorescent sensors for biomolecules and their biomedical application. Sensors and Actuators B: Chemical, 2017, 246, 686-695.	7.8	37
20	A turn-off fluorescence sensor for insensitive munition using anthraquinone-appended oxacalix[4]arene and its computational studies. New Journal of Chemistry, 2017, 41, 5125-5132.	2.8	33
21	Thiacalix[4]arene functionalized gold nano-assembly for recognition of isoleucine in aqueous solution and its antioxidant study. Chemical Physics Letters, 2017, 667, 137-145.	2.6	11
22	Novel calix[4]pyrrole assembly: Punctilious recognition of Fâ^ and Cu+2 ions. Journal of Molecular Structure, 2017, 1149, 299-306.	3.6	14
23	Quinoline appended oxacalixarene as turn-off fluorescent probe for the selective and sensitive determination of Cu2+ ions: A combined experimental and DFT study. Journal of Luminescence, 2017, 192, 256-262.	3.1	28
24	Thiacalix[4]arene-tetra-(quinoline-8- sulfonate): a Sensitive and Selective Fluorescent Sensor for Co (II). Journal of Fluorescence, 2016, 26, 1729-1736.	2.5	21
25	Calix-Based Nanoparticles: A Review. Topics in Current Chemistry, 2016, 374, 28.	5.8	26
26	Turn-off fluorescence probe for the selective determination of pendimethalin using a mechanistic docking model of novel oxacalix[4]arene. RSC Advances, 2016, 6, 53573-53577.	3.6	30
27	Propyl phthalimide-modified thiacalixphenyl[4]arene as a "turn on―chemosensor for Hg(II) ions. Journal of Luminescence, 2016, 179, 378-383.	3.1	19
28	Synthesis of Water-Dispersible Pd Nanoparticles Using a Novel Oxacalixarene Derivative and their Catalytic Application in C–C Coupling Reactions. Catalysis Letters, 2016, 146, 1581-1590.	2.6	10
29	The Chemistry of Nascent Oxacalix[n]hetarene (n≥4): A Review. Current Organic Chemistry, 2015, 19, 1077-1096.	1.6	28