
Arindam Ghatak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9434717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	METABOLOMICS INSYSTEMSBIOLOGY. Annual Review of Plant Biology, 2003, 54, 669-689.	18.7	614
2	Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics, 2004, 4, 78-83.	2.2	398
3	Differential metabolic networks unravel the effects of silent plant phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7809-7814.	7.1	376
4	Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 2017, 35, 969-976.	17.5	356
5	Proteome Analysis of <i>Arabidopsis</i> Leaf Peroxisomes Reveals Novel Targeting Peptides, Metabolic Pathways, and Defense Mechanisms. Plant Cell, 2007, 19, 3170-3193.	6.6	324
6	Metabolomics: from pattern recognition to biological interpretation. Drug Discovery Today, 2005, 10, 1551-1558.	6.4	274
7	Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Scientific Reports, 2016, 6, 31697.	3.3	252
8	Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. Plant Journal, 2010, 63, no-no.	5.7	190
9	Green systems biology — From single genomes, proteomes and metabolomes to ecosystems research and biotechnology. Journal of Proteomics, 2011, 75, 284-305.	2.4	189
10	Proteomics and comparative genomics of <i>Nitrososphaera viennensis</i> reveal the core genome and adaptations of archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7937-E7946.	7.1	178
11	Can we discover novel pathways using metabolomic analysis?. Current Opinion in Biotechnology, 2002, 13, 156-160.	6.6	170
12	COVAIN: a toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data. Metabolomics, 2012, 8, 81-93.	3.0	168
13	Integration of Metabolomic and Proteomic Phenotypes. Molecular and Cellular Proteomics, 2008, 7, 1725-1736.	3.8	155
14	Metabolomics- and Proteomics-Assisted Genome Annotation and Analysis of the Draft Metabolic Network of <i>Chlamydomonas reinhardtii</i> . Genetics, 2008, 179, 157-166.	2.9	141
15	The role of mass spectrometry in plant systems biology. Mass Spectrometry Reviews, 2006, 25, 173-214.	5.4	140
16	Male Sterility in Maize after Transient Heat Stress during the Tetrad Stage of Pollen Development. Plant Physiology, 2019, 181, 683-700.	4.8	139
17	A universal protocol for the combined isolation of metabolites, <scp>DNA</scp> , long <scp>RNA</scp> s, small <scp>RNA</scp> s, and proteins from plants and microorganisms. Plant Journal, 2014, 79, 173-180.	5.7	132
18	Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding. Frontiers in Plant Science, 2017, 8, 757.	3.6	131

#	Article	IF	CITATIONS
19	Identification of Novel in vivo MAP Kinase Substrates in Arabidopsis thaliana Through Use of Tandem Metal Oxide Affinity Chromatography. Molecular and Cellular Proteomics, 2013, 12, 369-380.	3.8	122
20	Systemic Cold Stress Adaptation of Chlamydomonas reinhardtii. Molecular and Cellular Proteomics, 2013, 12, 2032-2047.	3.8	122
21	Granger causality in integrated GC–MS and LC–MS metabolomics data reveals the interface of primary and secondary metabolism. Metabolomics, 2013, 9, 564-574.	3.0	118
22	Metabolomics Unravel Contrasting Effects of Biodiversity on the Performance of Individual Plant Species. PLoS ONE, 2010, 5, e12569.	2.5	114
23	System-level network analysis of nitrogen starvation and recovery in Chlamydomonas reinhardtii reveals potential new targets for increased lipid accumulation. Biotechnology for Biofuels, 2014, 7, 171.	6.2	103
24	Correlative GC-TOF-MS-based metabolite profiling and LC-MS-based protein profiling reveal time-related systemic regulation of metabolite–protein networks and improve pattern recognition for multiple biomarker selection. Metabolomics, 2005, 1, 109-121.	3.0	97
25	Cell-specific Analysis of the Tomato Pollen Proteome from Pollen Mother Cell to Mature Pollen Provides Evidence for Developmental Priming. Journal of Proteome Research, 2013, 12, 4892-4903.	3.7	97
26	ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites. BMC Bioinformatics, 2007, 8, 216.	2.6	96
27	Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. Molecular BioSystems, 2010, 6, 1018.	2.9	94
28	Cell-specific protein profiling in Arabidopsis thaliana trichomes: identification of trichome-located proteins involved in sulfur metabolism and detoxification. Phytochemistry, 2004, 65, 1641-1649.	2.9	90
29	Metabolomics: an integral technique in systems biology. Bioanalysis, 2010, 2, 829-836.	1.5	89
30	Integration of metabolomics and proteomics in molecular plant physiology – coping with the complexity by dataâ€dimensionality reduction. Physiologia Plantarum, 2008, 132, 176-189.	5.2	88
31	Unpredictability of metabolism—the key role of metabolomics science in combination with next-generation genome sequencing. Analytical and Bioanalytical Chemistry, 2011, 400, 1967-1978.	3.7	87
32	Heat stress response mechanisms in pollen development. New Phytologist, 2021, 231, 571-585.	7.3	84
33	Exploring natural variation of <i>Pinus pinaster</i> Aiton using metabolomics: Is it possible to identify the region of origin of a pine from its metabolites?. Molecular Ecology, 2016, 25, 959-976.	3.9	82
34	Fast-forward breeding for a food-secure world. Trends in Genetics, 2021, 37, 1124-1136.	6.7	82
35	Relative and absolute quantitative shotgun proteomics: targeting low-abundance proteins in Arabidopsis thaliana. Journal of Experimental Botany, 2006, 57, 1529-1535.	4.8	81
36	Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). Journal of Proteomics, 2016, 143, 122-135.	2.4	81

#	Article	IF	CITATIONS
37	Dynamic Adaption of Metabolic Pathways during Germination and Growth of Lily Pollen Tubes after Inhibition of the Electron Transport Chain Â. Plant Physiology, 2013, 162, 1822-1833.	4.8	79
38	A rapid approach for phenotypeâ€screening and database independent detection of cSNP/protein polymorphism using mass accuracy precursor alignment. Proteomics, 2008, 8, 4214-4225.	2.2	78
39	PANOMICS meets germplasm. Plant Biotechnology Journal, 2020, 18, 1507-1525.	8.3	78
40	If the antibody fails $\hat{a} \in $ a mass Western approach. Plant Journal, 2008, 55, 1039-1046.	5.7	77
41	Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiology Reviews, 2020, 44, 874-908.	8.6	73
42	Comprehensive Cell-specific Protein Analysis in Early and Late Pollen Development from Diploid Microsporocytes to Pollen Tube Growth. Molecular and Cellular Proteomics, 2014, 13, 295-310.	3.8	71
43	Arabidopsis thaliana as a model organism for plant proteome research. Journal of Proteomics, 2010, 73, 2239-2248.	2.4	65
44	Proteomics survey of Solanaceae family: Current status and challenges ahead. Journal of Proteomics, 2017, 169, 41-57.	2.4	65
45	Metabolomics in Plant Stress Physiology. Advances in Biochemical Engineering/Biotechnology, 2018, 164, 187-236.	1.1	63
46	An Improved Detergent-Compatible Gel-Fractionation LC-LTQ-Orbitrap-MS Workflow for Plant and Microbial Proteomics. Methods in Molecular Biology, 2014, 1072, 347-358.	0.9	63
47	An automated GCxGCâ€TOFâ€MS protocol for batchâ€wise extraction and alignment of mass isotopomer matrixes from differential ¹³ Câ€labelling experiments: a case study for photoautotrophicâ€mixotrophic grown <i>Chlamydomonas reinhardtii</i> cells. Journal of Basic Microbiology, 2009, 49, 82-91.	3.3	62
48	Proteomics of Heat-Stress and Ethylene-Mediated Thermotolerance Mechanisms in Tomato Pollen Grains. Frontiers in Plant Science, 2018, 9, 1558.	3.6	62
49	Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. Journal of Experimental Botany, 2013, 64, 4193-4206.	4.8	58
50	Pollen proteomics: from stress physiology to developmental priming. Plant Reproduction, 2016, 29, 119-132.	2.2	58
51	System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism. Frontiers in Plant Science, 2017, 8, 1066.	3.6	58
52	mzGroupAnalyzer-Predicting Pathways and Novel Chemical Structures from Untargeted High-Throughput Metabolomics Data. PLoS ONE, 2014, 9, e96188.	2.5	58
53	Heat-Treatment-Responsive Proteins in Different Developmental Stages of Tomato Pollen Detected by Targeted Mass Accuracy Precursor Alignment (tMAPA). Journal of Proteome Research, 2015, 14, 4463-4471.	3.7	56
54	Solving the Differential Biochemical Jacobian from Metabolomics Covariance Data. PLoS ONE, 2014, 9, e92299.	2.5	53

#	Article	IF	CITATIONS
55	Characterization of Indian beers: chemical composition and antioxidant potential. Journal of Food Science and Technology, 2015, 52, 1414-1423.	2.8	49
56	Stable isotope-free quantitative shotgun proteomics combined with sample pattern recognition for rapid diagnostics. Journal of Separation Science, 2006, 29, 2793-2801.	2.5	48
57	System level analysis of cacao seed ripening reveals a sequential interplay of primary and secondary metabolism leading to polyphenol accumulation and preparation of stress resistance. Plant Journal, 2016, 87, 318-332.	5.7	48
58	Systems biology for crop improvement. Plant Genome, 2021, 14, e20098.	2.8	48
59	Adjustment of photosynthetic activity to drought and fluctuating light in wheat. Plant, Cell and Environment, 2020, 43, 1484-1500.	5.7	45
60	Using ProtMAX to create high-mass-accuracy precursor alignments from label-free quantitative mass spectrometry data generated in shotgun proteomics experiments. Nature Protocols, 2013, 8, 595-601.	12.0	44
61	Physiological and Proteomic Signatures Reveal Mechanisms of Superior Drought Resilience in Pearl Millet Compared to Wheat. Frontiers in Plant Science, 2020, 11, 600278.	3.6	44
62	Metabolomic and Proteomic Profiles Reveal the Dynamics of Primary Metabolism during Seed Development of Lotus (Nelumbo nucifera). Frontiers in Plant Science, 2016, 7, 750.	3.6	43
63	MAPA Distinguishes Genotype-Specific Variability of Highly Similar Regulatory Protein Isoforms in Potato Tuber. Journal of Proteome Research, 2011, 10, 2979-2991.	3.7	42
64	Integrative molecular profiling indicates a central role of transitory starch breakdown in establishing a stable C/N homeostasis during cold acclimation in two natural accessions of Arabidopsis thaliana. BMC Plant Biology, 2015, 15, 284.	3.6	41
65	Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry. Journal of Experimental Botany, 2008, 59, 3307-3315.	4.8	40
66	Pro- and Antioxidant Activity of Three Selected Flavan Type Flavonoids: Catechin, Eriodictyol and Taxifolin. International Journal of Molecular Sciences, 2016, 17, 1986.	4.1	39
67	ProMEX – a mass spectral reference database for plant proteomics. Frontiers in Plant Science, 2012, 3, 125.	3.6	36
68	Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. Plant Journal, 2021, 107, 669-687.	5.7	34
69	Integrative Profiling of Metabolites and Proteins. Methods in Molecular Biology, 2007, 358, 57-75.	0.9	33
70	Mathematical modeling reveals that metabolic feedback regulation of SnRK1 and hexokinase is sufficient to control sugar homeostasis from energy depletion to full recovery. Frontiers in Plant Science, 2014, 5, 365.	3.6	28
71	Eco-Metabolomics and Metabolic Modeling: Making the Leap From Model Systems in the Lab to Native Populations in the Field. Frontiers in Plant Science, 2018, 9, 1556.	3.6	28
72	Root exudation of contrasting drought-stressed pearl millet genotypes conveys varying biological nitrification inhibition (BNI) activity. Biology and Fertility of Soils, 2022, 58, 291-306.	4.3	28

#	Article	IF	CITATIONS
73	Using RT-qPCR, Proteomics, and Microscopy to Unravel the Spatio-Temporal Expression and Subcellular Localization of Hordoindolines Across Development in Barley Endosperm. Frontiers in Plant Science, 2018, 9, 775.	3.6	26
74	Proteomics for abiotic stresses in legumes: present status and future directions. Critical Reviews in Biotechnology, 2023, 43, 171-190.	9.0	26
75	Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus (Nelumbo nucifera Gaertn.spp. baijianlian). Journal of Proteomics, 2016, 131, 61-70.	2.4	25
76	The membrane proteome of male gametophyte in Solanum lycopersicum. Journal of Proteomics, 2016, 131, 48-60.	2.4	25
77	Toward a Unification of System-Theoretical Principles in Biology and Ecology—The Stochastic Lyapunov Matrix Equation and Its Inverse Application. Frontiers in Applied Mathematics and Statistics, 2019, 5, .	1.3	21
78	Molecular response of Deinococcus radiodurans to simulated microgravity explored by proteometabolomic approach. Scientific Reports, 2019, 9, 18462.	3.3	20
79	Indian Grape Wines: A Potential Source of Phenols, Polyphenols, and Antioxidants. International Journal of Food Properties, 2014, 17, 818-828.	3.0	18
80	Microscopic and Proteomic Analysis of Dissected Developing Barley Endosperm Layers Reveals the Starchy Endosperm as Prominent Storage Tissue for ER-Derived Hordeins Alongside the Accumulation of Barley Protein Disulfide Isomerase (HvPDIL1-1). Frontiers in Plant Science, 2018, 9, 1248.	3.6	18
81	The different proteomes of Chlamydomonas reinhardtii. Journal of Proteomics, 2012, 75, 5883-5887.	2.4	16
82	A workflow for mathematical modeling of subcellular metabolic pathways in leaf metabolism of Arabidopsis thaliana. Frontiers in Plant Science, 2013, 4, 541.	3.6	16
83	Genomic footprints of repeated evolution of <scp>CAM</scp> photosynthesis in a Neotropical species radiation. Plant, Cell and Environment, 2020, 43, 2987-3001.	5.7	15
84	Structural and Functional Heat Stress Responses of Chloroplasts of Arabidopsis thaliana. Genes, 2020, 11, 650.	2.4	14
85	Multiomics approach unravels fertility transition in a pigeonpea line for a twoâ€line hybrid system. Plant Genome, 2020, 13, e20028.	2.8	14
86	Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination. International Journal of Molecular Sciences, 2021, 22, 12784.	4.1	14
87	Editorial: Sorghum and Pearl Millet as Climate Resilient Crops for Food and Nutrition Security. Frontiers in Plant Science, 2022, 13, 851970.	3.6	12
88	Evaluation of radical scavenging potential and total phenol content in Woodfordia fruticosa from different altitudes. Journal of Plant Biochemistry and Biotechnology, 2012, 21, 17-22.	1.7	11
89	Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics. Amino Acids, 2011, 41, 329-341.	2.7	10
90	Magnetic Field Induced Changes in the Shoot and Root Proteome of Barley (Hordeum vulgare L.). Frontiers in Plant Science, 2021, 12, 622795.	3.6	10

#	Article	IF	CITATIONS
91	From Proteomics to Systems Biology: MAPA, MASS WESTERN, PROMEX, and COVAIN as a User-Oriented Platform. Methods in Molecular Biology, 2014, 1072, 15-27.	0.9	10
92	Protocol for Enrichment of the Membrane Proteome of Mature Tomato Pollen. Bio-protocol, 2017, 7, e2315.	0.4	3
93	Multisite Protein Phosphorylation in Plants - Technical Considerations and Biological Implications. Current Proteomics, 2006, 3, 217-231.	0.3	2
94	Pollen Metabolome Dynamics: Biochemistry, Regulation and Analysis. , 2017, , 319-336.		2
95	Immunoproteomics approach for prediction of antigenic epitope of Tertiapin from Apis mellifera. International Journal of Drug Discovery, 2009, 1, 14-17.	0.2	2
96	(±)-Catechin—A Mass-Spectrometry-Based Exploration Coordination Complex Formation with Fell and FellI. Cells, 2022, 11, 958.	4.1	1