
Matilde Casas Parada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9434562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comparative study on the effect of structural variations of co-solvent on the Tetronic® micelles with widely different hydrophobicity. Journal of Molecular Liquids, 2019, 282, 97-104.	4.9	12
2	Urea induced changes in self-assembly and aggregate microstructures of amphiphilic star block copolymers with widely different hydrophobicity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 259-267.	4.7	15
3	Surface and Aggregation Behavior of Pentablock Copolymer PNIPAM ₇ -F127-PNIPAM ₇ in Aqueous Solutions. Journal of Physical Chemistry B, 2016, 120, 7569-7578.	2.6	10
4	A multitechnique approach on adsorption, self-assembly and quercetin solubilization by Tetronics® micelles in aqueous solutions modulated by glycine. Colloids and Surfaces B: Biointerfaces, 2016, 148, 411-421.	5.0	27
5	Interaction of poloxamine block copolymers with lipid membranes: Role of copolymer structure and membrane cholesterol content. Colloids and Surfaces B: Biointerfaces, 2015, 133, 270-277.	5.0	14
6	Poloxamine micellar solubilization of α-tocopherol for topical ocular treatment. Colloids and Surfaces B: Biointerfaces, 2013, 103, 550-557.	5.0	35
7	Interactions between an anticancer drug – edelfosine – and cholesterol in Langmuir monolayers. Thin Solid Films, 2008, 516, 8829-8833.	1.8	27
8	BAM studies on the penetration of amphotericin B into lipid mixed monolayers of cellular membranes. Applied Surface Science, 2005, 246, 334-341.	6.1	15
9	Penetration of amphotericin B into DOPC monolayers containing sterols of cellular membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 129-137.	4.7	17
10	Interactions between the ganglioside GM1 and hexadecylphosphocholine (miltefosine) in monolayers at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2005, 41, 63-72.	5.0	7
11	Study of the ï€â€"A isotherms of miltefosine monolayers spread at the air/water interface. Physical Chemistry Chemical Physics, 2004, 6, 1580-1586.	2.8	23
12	Interactions of amphotericin B with saturated and unsaturated phosphatidylcholines at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2003, 29, 205-215.	5.0	28
13	Interactions between Amphotericin B and Sterols in Monolayers. Mixed Films of Amphotericin B-Cholesterol. Langmuir, 1999, 15, 5567-5573.	3.5	36
14	Interaction between Amphotericin B and Sterols in Monolayers. Mixed Films of Ergosterolâ ^{~^} Amphotericin B. Langmuir, 1999, 15, 3570-3573.	3.5	29
15	Molecular organisation of amphotericin B at the air–water interface in the presence of sterols: a monolayer study. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1375, 73-83.	2.6	55
16	Study of π–ACurves for Mixed Monolayers of Cyclosporin and Poly(dl-Lactic Acid-co-Glycolic Acid) Spread at the Air/Water Interface. Journal of Colloid and Interface Science, 1997, 185, 77-83.	9.4	5
17	Interaction between Cyclosporin and Poly(isobutyl cyanoacrylate) Nanoparticles in Monolayers. Langmuir, 1994, 10, 1888-1893.	3.5	10
18	Influence of pH and temperature on poly(isobutyl cyanoacrylate) monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 76, 101-108.	4.7	10

#	Article	IF	CITATIONS
19	Compression—expansion curves of cyclosporin A monolayers on substrates of various ionic strengths. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 76, 227-232.	4.7	9
20	Compression-expansion curves of poly(DL-lactic acid-co-glycolic acid) monolayers. Langmuir, 1992, 8, 2781-2784.	3.5	12
21	Effect of polymerized silicic acid on mixed lipid-protein monolayers used as cell membrane models. I. Hemoglobin-stearoyl erythroceramide films. Colloid and Polymer Science, 1992, 270, 478-484.	2.1	7
22	Effect of polymerized silicic acid on mixed lipid-protein monolayers used as cell-membrane models II. Pepsin-sphingomyelin films. Colloid and Polymer Science, 1992, 270, 485-491.	2.1	3
23	Penetration of chlorcyclizine and ampicillin into mixed phospholipid—oleic acid monolayers. Colloids and Surfaces, 1992, 68, 207-214.	0.9	7
24	Interactions of a non-ionic surfactant with mixed phospholipid—oleic acid monolayers. Surface potential and surface pressure studies at constant area. Colloids and Surfaces, 1992, 63, 301-309.	0.9	17
25	Comparative study of the behaviour of mixed monolayers of human serum albumin and sphingomyelin in the presence and absence of polysilicic acid. Colloids and Surfaces, 1991, 59, 345-359.	0.9	4