Minsong Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9434049/publications.pdf Version: 2024-02-01

		218662	254170
112	2,401	26	43
papers	citations	h-index	g-index
114	114	114	2768
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	⁶⁸ Ga-PSMA-11 PET/CT Mapping of Prostate Cancer Biochemical Recurrence After Radical Prostatectomy in 270 Patients with a PSA Level of Less Than 1.0 ng/mL: Impact on Salvage Radiotherapy Planning. Journal of Nuclear Medicine, 2018, 59, 230-237.	5.0	226
2	A Multi-Institutional Experience of MR-Guided Liver Stereotactic Body Radiation Therapy. Advances in Radiation Oncology, 2019, 4, 142-149.	1.2	121
3	Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1054-1075.	0.8	109
4	Longitudinal diffusion MRI for treatment response assessment: Preliminary experience using an MRIâ€guided triâ€cobalt 60 radiotherapy system. Medical Physics, 2016, 43, 1369-1373.	3.0	95
5	External Beam Radiation Therapy for Primary Liver Cancers: An ASTRO Clinical Practice Guideline. Practical Radiation Oncology, 2022, 12, 28-51.	2.1	92
6	Potential Impact of ⁶⁸ Ga-PSMA-11 PET/CT on the Planning of Definitive Radiation Therapy for Prostate Cancer. Journal of Nuclear Medicine, 2018, 59, 1714-1721.	5.0	81
7	Online Adaptive Radiation Therapy: Implementation of a New Process of Care. Cureus, 2017, 9, e1618.	0.5	77
8	The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery. Medical Physics, 2015, 42, 6457-6467.	3.0	53
9	Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK). Medical Physics, 2017, 44, 1359-1368.	3.0	51
10	Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck <scp>CT</scp> and lowâ€field <scp>MR</scp> images. Medical Physics, 2019, 46, 2669-2682.	3.0	51
11	Initial clinical observations of intra- and interfractional motion variation in MR-guided lung SBRT. British Journal of Radiology, 2018, 91, 20170522.	2.2	44
12	Image-guided radiotherapy for prostate cancer. Translational Andrology and Urology, 2018, 7, 308-320.	1.4	44
13	Viability of Noncoplanar VMAT for liver SBRT compared with coplanar VMAT and beam orientation optimized 4ï€ IMRT. Advances in Radiation Oncology, 2016, 1, 67-75.	1.2	43
14	Feasibility evaluation of diffusion-weighted imaging using an integrated MRI-radiotherapy system for response assessment to neoadjuvant therapy in rectal cancer. British Journal of Radiology, 2017, 90, 20160739.	2.2	43
15	Retrospective evaluation of decision-making for pancreatic stereotactic MR-guided adaptive radiotherapy. Radiotherapy and Oncology, 2018, 129, 319-325.	0.6	43
16	The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer. Journal of Nuclear Medicine, 2018, 59, 557-567.	5.0	41
17	A Prospective 4ï€ Radiation Therapy Clinical Study in Recurrent High-Grade Glioma Patients. International Journal of Radiation Oncology Biology Physics, 2018, 101, 144-151.	0.8	36
18	Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning. Journal of Medical Physics, 2016, 41, 3.	0.3	36

#	Article	IF	CITATIONS
19	Developing DCE-CT to Quantify Intra-Tumor Heterogeneity in Breast Tumors With Differing Angiogenic Phenotype. IEEE Transactions on Medical Imaging, 2009, 28, 861-871.	8.9	35
20	Dosimetric validation of a magnetic resonance image gated radiotherapy system using a motion phantom and radiochromic film. Journal of Applied Clinical Medical Physics, 2017, 18, 163-169.	1.9	35
21	Inadequate target volume delineation and local–regional recurrence after intensity-modulated radiotherapy for human papillomavirus-positive oropharynx cancer. Radiotherapy and Oncology, 2017, 123, 412-418.	0.6	34
22	A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator–based stereotactic body radiotherapy for central early-stage nonâ^'small cell lung cancer. Medical Dosimetry, 2016, 41, 87-91.	0.9	31
23	Distortionâ€free diffusion <scp>MRI</scp> using an <scp>MRI</scp> â€guided Triâ€Cobalt 60 radiotherapy system: Sequence verification and preliminary clinical experience. Medical Physics, 2017, 44, 5357-5366.	3.0	31
24	Clinical Outcomes Using Magnetic Resonance–Guided Stereotactic Body Radiation Therapy in Patients With Locally Advanced Cholangiocarcinoma. Advances in Radiation Oncology, 2020, 5, 189-195.	1.2	31
25	Tolerance of the Brachial Plexus to High-Dose Reirradiation. International Journal of Radiation Oncology Biology Physics, 2017, 98, 83-90.	0.8	30
26	Clinical Assessment of Prostate Displacement and Planning Target Volume Margins for Stereotactic Body Radiotherapy of Prostate Cancer. Frontiers in Oncology, 2020, 10, 539.	2.8	29
27	Magnetic resonance imaging-guided stereotactic body radiotherapy for prostate cancer (mirage): a phase iii randomized trial. BMC Cancer, 2021, 21, 538.	2.6	29
28	Feasibility of magnetic resonance imaging–guided liver stereotactic body radiation therapy: A comparison between modulated tri-cobalt-60 teletherapy and linear accelerator–based intensity modulated radiation therapy. Practical Radiation Oncology, 2015, 5, 330-337.	2.1	28
29	Magnetic resonance imaging guided reirradiation of recurrent and second primary head and neck cancer. Advances in Radiation Oncology, 2017, 2, 167-175.	1.2	28
30	Predicting liver SBRT eligibility and plan quality for VMAT and 4Ï€ plans. Radiation Oncology, 2017, 12, 70.	2.7	28
31	Multimodality image registration in the headâ€andâ€neck using a deep learningâ€derived synthetic CT as a bridge. Medical Physics, 2020, 47, 1094-1104.	3.0	28
32	Ablative radiotherapy for liver tumors using stereotactic MRI-guidance: A prospective phase I trial. Radiotherapy and Oncology, 2022, 170, 14-20.	0.6	28
33	Impact of dose size in single fraction spatially fractionated (grid) radiotherapy for melanoma. Medical Physics, 2014, 41, 021727.	3.0	24
34	Time-Driven Activity-Based Costing Comparison of CT-Guided Versus MR-Guided SBRT. JCO Oncology Practice, 2020, 16, e1378-e1385.	2.9	24
35	Dose–response with stereotactic body radiotherapy for prostate cancer: A multi-institutional analysis of prostate-specific antigen kinetics and biochemical control. Radiotherapy and Oncology, 2021, 154, 207-213.	0.6	24
36	Magnetic resonance imaging-guided versus computed tomography-guided stereotactic body radiotherapy for prostate cancer (MIRAGE): Interim analysis of a phase III randomized trial Journal of Clinical Oncology, 2022, 40, 255-255.	1.6	24

Minsong Cao

#	Article	IF	CITATIONS
37	Dose domain regularization of MLC leaf patterns for highly complex IMRT plans. Medical Physics, 2015, 42, 1858-1870.	3.0	23
38	Cardiac balanced steady-state free precession MRI at 0.35 T: a comparison study with 1.5 T. Quantitative Imaging in Medicine and Surgery, 2018, 8, 627-636.	2.0	23
39	Clinical outcomes of stereotactic magnetic resonance imageâ€guided adaptive radiotherapy for primary and metastatic tumors in the abdomen and pelvis. Cancer Medicine, 2021, 10, 5897-5906.	2.8	20
40	Dosimetric impact of interfraction prostate and seminal vesicle volume changes and rotation: A post-hoc analysis of a phase III randomized trial of MRI-guided versus CT-guided stereotactic body radiotherapy. Radiotherapy and Oncology, 2022, 167, 203-210.	0.6	20
41	Functional imaging in small animals using X-ray computed Tomography -study of physiologic measurement reproducibility. IEEE Transactions on Medical Imaging, 2005, 24, 832-843.	8.9	19
42	Laser-plasma generated very high energy electrons in radiation therapy of the prostate. Proceedings of SPIE, 2008, , .	0.8	19
43	Respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK): Initial clinical experience on an MRI-guided radiotherapy system. Radiotherapy and Oncology, 2018, 127, 467-473.	0.6	19
44	Prostate-specific antigen kinetics and biochemical control following stereotactic body radiation therapy, high dose rate brachytherapy, and low dose rate brachytherapy: A multi-institutional analysis of 3502 patients. Radiotherapy and Oncology, 2020, 151, 26-32.	0.6	19
45	Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy. Medical Physics, 2015, 43, 262-267.	3.0	18
46	Anatomic and dosimetric changes in patients with head and neck cancer treated with an integrated MRI-tri- ⁶⁰ Co teletherapy device. British Journal of Radiology, 2016, 89, 20160624.	2.2	18
47	The significance of PTV dose coverage on cancer control outcomes in early stage non-small cell lung cancer patients treated with highly ablative stereotactic body radiation therapy. British Journal of Radiology, 2016, 89, 20150963.	2.2	17
48	Stereotactic MRI-guided Adaptive Radiation Therapy (SMART) for Locally Advanced Pancreatic Cancer: A Promising Approach. Cureus, 2018, 10, e2324.	0.5	17
49	Evaluation of Rotational Errors in Treatment Setup ofÂStereotactic Body Radiation Therapy of Liver Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 84, e435-e440.	0.8	15
50	Correlation of 2D parameters to lung and heart dose-volume in radiation treatment of breast cancer. Acta Oncológica, 2013, 52, 178-183.	1.8	15
51	Computerized triplet beam orientation optimization for MRIâ€guided Coâ€60 radiotherapy. Medical Physics, 2016, 43, 5667-5675.	3.0	14
52	Prostate bed and organ-at-risk deformation: Prospective volumetric and dosimetric data from a phase II trial of stereotactic body radiotherapy after radical prostatectomy. Radiotherapy and Oncology, 2020, 148, 44-50.	0.6	14
53	Analysis of Geometric Performance and Dosimetric Impact of Using Automatic Contour Segmentation for Radiotherapy Planning. Frontiers in Oncology, 2020, 10, 1762.	2.8	13
54	Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification. , 2006, , .		12

#	Article	IF	CITATIONS
55	Practical Safety Considerations for Integration of Magnetic Resonance Imaging in Radiation Therapy. Practical Radiation Oncology, 2020, 10, 443-453.	2.1	12
56	Phase 1 Trial of Stereotactic Body Radiation Therapy Neoadjuvant to Radical Prostatectomy for Patients With High-Risk Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 108, 930-935.	0.8	12
57	Are inâ€house diagnostic MR physicists necessary for clinical implementation of MRI guided radiotherapy?. Journal of Applied Clinical Medical Physics, 2017, 18, 6-9.	1.9	11
58	The Timeliness Initiative: Continuous Process Improvement for Prompt Initiation of Radiation Therapy Treatment. Advances in Radiation Oncology, 2020, 5, 1014-1021.	1.2	11
59	Prediction of soft tissue sarcoma response to radiotherapy using longitudinal diffusion MRI and a deep neural network with generative adversarial networkâ€based data augmentation. Medical Physics, 2021, 48, 3262-3372.	3.0	11
60	Interfractional Geometric Variations and Dosimetric Benefits of Stereotactic MRI Guided Online Adaptive Radiotherapy (SMART) of Prostate Bed after Radical Prostatectomy: Post-Hoc Analysis of a Phase II Trial. Cancers, 2021, 13, 2802.	3.7	11
61	Evaluation of T2-Weighted MRI for Visualization and Sparing of Urethra with MR-Guided Radiation Therapy (MRgRT) On-Board MRI. Cancers, 2021, 13, 3564.	3.7	11
62	Monitoring the Longitudinal Intra-tumor Physiological Impulse Response to VEGFR2 Blockade in Breast Tumors Using DCE-CT. Molecular Imaging and Biology, 2011, 13, 1183-1195.	2.6	10
63	Brachytherapy doseâ€volume histogram commissioning with multiple planning systems. Journal of Applied Clinical Medical Physics, 2014, 15, 110-120.	1.9	10
64	Accelerated 3D <scp>bSSFP</scp> imaging for treatment planning on an <scp>MRI</scp> â€guided radiotherapy system. Medical Physics, 2018, 45, 2595-2602.	3.0	10
65	Monitoring the Effects of Anti-angiogenesis on the Radiation Sensitivity of Pancreatic Cancer Xenografts Using Dynamic Contrast-Enhanced Computed Tomography. International Journal of Radiation Oncology Biology Physics, 2014, 88, 412-418.	0.8	9
66	Effect of Radiation Doses to the Heart on Survival for Stereotactic Ablative Radiotherapy for Early-stage Non–Small-cell Lung Cancer: An Artificial Neural Network Approach. Clinical Lung Cancer, 2020, 21, 136-144.e1.	2.6	9
67	Automated Non-Coplanar VMAT for Dose Escalation in Recurrent Head and Neck Cancer Patients. Cancers, 2021, 13, 1910.	3.7	9
68	Findings of the AAPM Ad Hoc committee on magnetic resonance imaging in radiation therapy: Unmet needs, opportunities, and recommendations. Medical Physics, 2021, 48, 4523-4531.	3.0	9
69	Dosimetric feasibility of magnetic resonance imagingâ€guided tri-cobalt 60 preoperative intensity modulated radiation therapy for soft tissue sarcomas of the extremity. Practical Radiation Oncology, 2015, 5, 350-356.	2.1	8
70	Correlation of Clinical and Dosimetric Parameters With Radiographic Lung Injury Following Stereotactic Body Radiotherapy. Technology in Cancer Research and Treatment, 2015, 14, 411-418.	1.9	8
71	Stereotactic Magnetic Resonance-guided Online Adaptive Radiotherapy for Oligometastatic Breast Cancer: A Case Report. Cureus, 2018, 10, e2368.	0.5	8
72	Stereotactic body radiotherapy to the prostate and pelvic lymph nodes: A detailed dosimetric analysis of a phase II prospective trial. British Journal of Radiology, 2019, 92, 20181001.	2.2	7

#	Article	IF	CITATIONS
73	Dosimetric Effects of Air Cavities for MRI-Guided Online Adaptive Radiation Therapy (MRgART) of Prostate Bed after Radical Prostatectomy. Journal of Clinical Medicine, 2022, 11, 364.	2.4	7
74	Ensemble learning and tensor regularization for coneâ€beam computed tomographyâ€based pelvic organ segmentation. Medical Physics, 2022, 49, 1660-1672.	3.0	7
75	A simple method for dose fusion from multimodality treatment ofÂprostate cancer: Brachytherapy to external beam therapy. Brachytherapy, 2011, 10, 214-220.	0.5	6
76	Dose impact in radiographic lung injury following lung SBRT: Statistical analysis and geometric interpretation. Medical Physics, 2014, 41, 031701.	3.0	6
77	Gantry-Mounted Linear Accelerator–Based Stereotactic Body Radiation Therapy for Low- and Intermediate-Risk Prostate Cancer. Advances in Radiation Oncology, 2020, 5, 404-411.	1.2	6
78	Multi-task edge-recalibrated network for male pelvic multi-organ segmentation on CT images. Physics in Medicine and Biology, 2021, 66, 035001.	3.0	6
79	Magnetic Resonance Imaging Guidance Mitigates the Effects of Intrafraction Prostate Motion During Stereotactic Body Radiotherapy for Prostate Cancer. Cureus, 2018, 10, e2442.	0.5	6
80	Magnetic Resonance-guided Inter-fraction Monitoring Opens Doors to Delivering Safer Reirradiation: An Illustrative Case Report and Discussion. Cureus, 2018, 10, e2479.	0.5	6
81	Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors. , 2010, , .		5
82	A Prospective Phase II Study of Automated Non-Coplanar VMAT for Recurrent Head and Neck Cancer: Initial Report of Feasibility, Safety, and Patient-Reported Outcomes. Cancers, 2022, 14, 939.	3.7	5
83	Hazards of sparing the ipsilateral parotid gland in the node-positive neck with intensity modulated radiation therapy: Spatial analysis of regional recurrence risk. Advances in Radiation Oncology, 2018, 3, 111-120.	1.2	4
84	Evaluation of the correlation between dosimetric, geometric, and technical parameters of radiosurgery planning for multiple brain metastases. Journal of Applied Clinical Medical Physics, 2021, 22, 83-92.	1.9	4
85	HEV maximum power performance simulation and duty cycle generation. International Journal of Vehicle Design, 2005, 38, 42.	0.3	3
86	Comparison of lung tumor motion measured using a model-based 4DCT technique and a commercial protocol. Practical Radiation Oncology, 2018, 8, e175-e183.	2.1	3
87	Image-guided adaptive radiotherapy improves acute toxicity during intensity-modulated radiation therapy for head and neck cancer. Journal of Radiation Oncology, 2018, 7, 139-145.	0.7	3
88	Safetyâ€oriented design of inâ€house software for new techniques: A case study using a modelâ€based 4 DCT protocol. Medical Physics, 2019, 46, 1523-1532.	3.0	3
89	Development and Validation of a Comprehensive Multivariate Dosimetric Model for Predicting Late Genitourinary Toxicity Following Prostate Cancer Stereotactic Body Radiotherapy. Frontiers in Oncology, 2020, 10, 786.	2.8	3
90	Clinical assessment of geometric distortion for a 0.35T MRâ€guided radiotherapy system. Journal of Applied Clinical Medical Physics, 2021, 22, 303-309.	1.9	3

#	Article	IF	CITATIONS
91	Dosimetric Impact of Surgical Clips in Electron Beam Treatment of Breast Cancer. Medical Dosimetry, 2010, 35, 85-86.	0.9	2
92	Response to Letter Regarding Article: "Developing DCE-CT to Quantify Intra-Tumor Heterogeneity in Breast Tumors With Differing Angiogenic Phenotype― IEEE Transactions on Medical Imaging, 2010, 29, 1089-1092.	8.9	2
93	A Comparison of the Distortion in the Same Field MRI and MR-Linac System With a 3D Printed Phantom. Frontiers in Oncology, 2021, 11, 579451.	2.8	2
94	MRI-guided Dose-escalated Salvage Radiotherapy for Bulky Bladder Neck Recurrence of Prostate Cancer. Cureus, 2018, 10, e2360.	0.5	2
95	Surgical ablation after stereotactic body radiation therapy for ventricular arrhythmias. HeartRhythm Case Reports, 2022, 8, 73-76.	0.4	2
96	Bladder surface dose modeling in prostate cancer radiotherapy: An analysis of motionâ€induced variations and the cumulative dose across the treatment. Medical Physics, 2021, 48, 8024-8036.	3.0	2
97	Evaluating dynamic contrast-enhanced and photoacoustic CT to assess intra-tumor heterogeneity in xenograft mouse models. , 2006, , .		1
98	Technical Factors for Consideration in Selecting a 4-D CT Simulator. Journal of the American College of Radiology, 2012, 9, 444-446.	1.8	1
99	Using neural networks to extend cropped medical images for deformable registration among images with differing scan extents. Medical Physics, 2021, 48, 4459-4471.	3.0	1
100	Technical Note: Air bubbleâ€induced performance degradation in automatic rectum segmentation from coneâ€beam CT. Medical Physics, 2022, , .	3.0	1
101	Prostate-Centric Versus Bony-Centric Registration in the Definitive Treatment of Node-Positive Prostate Cancer with Simultaneous Integrated Boost: A Dosimetric Comparison. Advances in Radiation Oncology, 2022, 7, 100944.	1.2	1
102	Assessment of multislice CT to quantify pulmonary emphysema function and physiology in a rat model. , 2005, , .		0
103	Myocardial physiology measurements using contrast enhanced dynamic computed tomography: simulation of beam hardening effect. , 2006, 6143, 822.		0
104	Effects of radiation on tumor hemodynamics and NF-kappaB in breast tumors. , 2010, , .		0
105	Technical Note: Dosimetric effects of couch position variability on treatment plan quality with an MRI-guided Co-60 radiation therapy machine. Medical Physics, 2016, 43, 4514-4519.	3.0	0
106	Radiosensitizing Pancreatic Cancer Xenografts by an Implantable Micro-Oxygen Generator. Radiation Research, 2016, 185, 431.	1.5	0
107	Comparison between CT- and MRI-derived head and neck cancer target volumes using an integrated MRI-tri-60Co teletherapy device. Journal of Radiation Oncology, 2018, 7, 147-155.	0.7	0
108	Simulated consult and treatment exercise improves radiation oncology trainee confidence and knowledge. Journal of Education and Health Promotion, 2021, 10, 218.	0.6	0

#	Article	IF	CITATIONS
109	Time-Driven Activity-Based Costing of CT-Guided vs MR-Guided Prostate SBRT. Applied Radiation Oncology, 2021, 10, 33-40.	0.5	0
110	Recent Advances in Functional MRI to Predict Treatment Response for Locally Advanced Rectal Cancer. Current Colorectal Cancer Reports, 0, , 1.	0.5	0
111	Radiation Therapy for the Treatment of Cardiac Arrhythmias. International Journal of Radiation Oncology Biology Physics, 2022, 112, 577-580.	0.8	0
112	A simulated comparison of lung tumor target verification using stereoscopic tomosynthesis or radiography. Medical Physics, 2022, , .	3.0	0