Kornel Kistamas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9433975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calcium and Excitation-Contraction Coupling in the Heart. Circulation Research, 2017, 121, 181-195.	2.0	526
2	Dynamics of the late Na+ current during cardiac action potential and its contribution to afterdepolarizations. Journal of Molecular and Cellular Cardiology, 2013, 64, 59-68.	0.9	86
3	Activation of TRPV3 Regulates Inflammatory Actions of Human Epidermal Keratinocytes. Journal of Investigative Dermatology, 2018, 138, 365-374.	0.3	62
4	Disulfide-activated protein kinase G lα regulates cardiac diastolic relaxation and fine-tunes the Frank–Starling response. Nature Communications, 2016, 7, 13187.	5.8	46
5	Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Frontiers in Pharmacology, 2020, 11, 72.	1.6	44
6	Contribution of ion currents to beat-to-beat variability of action potential duration in canine ventricular myocytes. Pflugers Archiv European Journal of Physiology, 2015, 467, 1431-1443.	1.3	40
7	Late Sodium Current Inhibitors as Potential Antiarrhythmic Agents. Frontiers in Pharmacology, 2020, 11, 413.	1.6	38
8	Experimentally-Based Computational Investigation into Beat-To-Beat Variability in Ventricular Repolarization and Its Response to Ionic Current Inhibition. PLoS ONE, 2016, 11, e0151461.	1.1	29
9	Systolic [Ca ²⁺] _i regulates diastolic levels in rat ventricular myocytes. Journal of Physiology, 2017, 595, 5545-5555.	1.3	26
10	Sarcolemmal Ca 2+ -entry through L-type Ca 2+ channels controls the profile of Ca 2+ -activated Cl â^' current in canine ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2016, 97, 125-139.	0.9	20
11	Late sodium current in human, canine and guinea pig ventricular myocardium. Journal of Molecular and Cellular Cardiology, 2020, 139, 14-23.	0.9	20
12	Transient receptor potential melastatin 4 channel inhibitor 9-phenanthrol inhibits K ⁺ but not Ca ²⁺ currents in canine ventricular myocytes. Canadian Journal of Physiology and Pharmacology, 2018, 96, 1022-1029.	0.7	19
13	Ca2+-activated Clâ^' current is antiarrhythmic by reducing both spatial and temporal heterogeneity of cardiac repolarization. Journal of Molecular and Cellular Cardiology, 2017, 109, 27-37.	0.9	18
14	Asynchronous activation of calcium and potassium currents by isoproterenol in canine ventricular myocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 457-467.	1.4	15
15	Role of Gap Junction Channel in the Development of Beat-to-Beat Action Potential Repolarization Variability and Arrhythmias. Current Pharmaceutical Design, 2014, 21, 1042-1052.	0.9	15
16	Cytosolic calcium changes affect the incidence of early afterdepolarizations in canine ventricular myocytes. Canadian Journal of Physiology and Pharmacology, 2015, 93, 527-534.	0.7	13
17	Tetrodotoxin Blockade on Canine Cardiac L-Type Ca2+ Channels Depends on pH and Redox Potential. Marine Drugs, 2013, 11, 2140-2153.	2.2	10
18	9–Anthracene carboxylic acid is more suitable than DIDS for characterization of calcium-activated chloride current during canine ventricular action potential. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 87-100.	1.4	9

KORNEL KISTAMAS

#	Article	IF	CITATIONS
19	Late sodium current and calcium homeostasis in arrhythmogenesis. Channels, 2021, 15, 1-19.	1.5	9
20	Mexiletine-like cellular electrophysiological effects of CS967 in canine ventricular myocardium. Scientific Reports, 2021, 11, 9565.	1.6	8
21	Oxidative shift in tissue redox potential increases beat-to-beat variability of action potential duration. Canadian Journal of Physiology and Pharmacology, 2015, 93, 563-568.	0.7	7
22	Expression of anti-Mullerian hormone receptor on the appendix testis in connection with urological disorders. Asian Journal of Andrology, 2013, 15, 400-403.	0.8	7
23	Concept of relative variability of cardiac action potential duration and its test under various experimental conditions. General Physiology and Biophysics, 2016, 35, 55-62.	0.4	7
24	Effects of tacrolimus on action potential configuration and transmembrane ion currents in canine ventricular cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 239-246.	1.4	6
25	Effects of pioglitazone on cardiac ion currents and action potential morphology in canine ventricular myocytes. European Journal of Pharmacology, 2013, 710, 10-19.	1.7	6
26	Correlation between the androgen receptor status of the appendix testis and the efficacy of human chorionic gonadotropin treatment in undescended testis. International Urology and Nephrology, 2015, 47, 1235-1239.	0.6	6
27	Transient receptor potential vanilloid 3 expression is increased in nonâ€lesional skin of atopic dermatitis patients. Experimental Dermatology, 2022, 31, 807-813.	1.4	6
28	Effect of the intracellular calcium concentration chelator BAPTA acetoxy-methylester on action potential duration in canine ventricular myocytes. Journal of Physiology and Pharmacology, 2018, 69, 99-107.	1.1	5
29	Implication of frequency-dependent protocols in antiarrhythmic and proarrhythmic drug testing. Progress in Biophysics and Molecular Biology, 2020, 157, 76-83.	1.4	4
30	Long Term Regulation of Cardiac L-Type Calcium Channel by Small G Proteins. Current Medicinal Chemistry, 2011, 18, 3714-3719.	1.2	2