
Wolf-Dieter Reiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9433687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Cell Wall Arabinose-Deficient <i>Arabidopsis thaliana</i> Mutant <i>murus5</i> Encodes a Defective Allele of <i>REVERSIBLY GLYCOSYLATED POLYPEPTIDE2</i> Plant Physiology, 2016, 171, 1905-1920.	4.8	5
2	Galactose-Depleted Xyloglucan Is Dysfunctional and Leads to Dwarfism in Arabidopsis. Plant Physiology, 2015, 167, 1296-1306.	4.8	90
3	The Colgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11563-11568.	7.1	113
4	Characterization of Arabidopsis <i>mur3</i> mutations that result in constitutive activation of defence in petioles, but not leaves. Plant Journal, 2008, 56, 691-703.	5.7	40
5	Biochemical genetics of nucleotide sugar interconversion reactions. Current Opinion in Plant Biology, 2008, 11, 236-243.	7.1	111
6	The Arabidopsis Root Hair Cell Wall Formation Mutant lrx1 Is Suppressed by Mutations in the RHM1 Gene Encoding a UDP-L-Rhamnose Synthase. Plant Cell, 2006, 18, 1630-1641.	6.6	114
7	Depletion of UDP-d-apiose/UDP-d-xylose Synthases Results in Rhamnogalacturonan-II Deficiency, Cell Wall Thickening, and Cell Death in Higher Plants. Journal of Biological Chemistry, 2006, 281, 13708-13716.	3.4	86
8	Genomics of plant cell wall biogenesis. Planta, 2005, 221, 747-751.	3.2	90
9	Molecular Analysis of 10 Coding Regions from Arabidopsis That Are Homologous to the MUR3 Xyloglucan Galactosyltransferase. Plant Physiology, 2004, 134, 940-950.	4.8	74
10	The Biosynthesis of d-Galacturonate in Plants. Functional Cloning and Characterization of a Membrane-Anchored UDP-d-Glucuronate 4-Epimerase from Arabidopsis. Plant Physiology, 2004, 135, 1221-1230.	4.8	75
11	Identification and characterization of a UDP-d-glucuronate 4-epimerase inArabidopsis. FEBS Letters, 2004, 569, 327-331.	2.8	60
12	Chloroplast biogenesis by Arabidopsis seedlings is impaired in the presence of exogenous glucose. Physiologia Plantarum, 2003, 118, 456-463.	5.2	22
13	The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase fromArabidopsis. Plant Journal, 2003, 35, 693-703.	5.7	85
14	The Biosynthesis of l-Arabinose in Plants. Plant Cell, 2003, 15, 523-531.	6.6	161
15	Tensile Properties of Arabidopsis Cell Walls Depend on Both a Xyloglucan Cross-Linked Microfibrillar Network and Rhamnogalacturonan II-Borate Complexes. Plant Physiology, 2003, 132, 1033-1040.	4.8	255
16	The GMD1 and GMD2 Genes of Arabidopsis Encode Isoforms of GDP-D-Mannose 4,6-Dehydratase with Cell Type-Specific Expression Patterns. Plant Physiology, 2003, 132, 883-892.	4.8	36
17	The MUR3 Gene of Arabidopsis Encodes a Xyloglucan Galactosyltransferase That Is Evolutionarily Related to Animal Exostosins. Plant Cell, 2003, 15, 1662-1670.	6.6	304
18	Distribution of Fucose-Containing Xyloglucans in Cell Walls of the mur1 Mutant of Arabidopsis. Plant Physiology, 2003, 131, 1602-1612.	4.8	83

WOLF-DIETER REITER

#	Article	IF	CITATIONS
19	The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3340-3345.	7.1	256
20	Biosynthesis and properties of the plant cell wall. Current Opinion in Plant Biology, 2002, 5, 536-542.	7.1	184
21	One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated. Plant Molecular Biology, 2001, 46, 447-457.	3.9	90
22	Molecular genetics of nucleotide sugar interconversion pathways in plants. , 2001, 47, 95-113.		182
23	A bifunctional epimerase-reductase acts downstream of the MUR1 gene product and completes the de novo synthesis of GDP-L-fucose in Arabidopsis. Plant Journal, 2000, 21, 445-454.	5.7	67
24	Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species. Planta, 2000, 211, 743-751.	3.2	186
25	The mur4 Mutant of Arabidopsis Is Partially Defective in the de Novo Synthesis of Uridine Diphosphol-Arabinose. Plant Physiology, 1999, 121, 383-390.	4.8	82
26	Characterization of N-Glycans from Arabidopsis. Application to a Fucose-Deficient Mutant1. Plant Physiology, 1999, 119, 725-734.	4.8	94
27	Arabidopsis thaliana as a model system to study synthesis, structure, and function of the plant cell wall. Plant Physiology and Biochemistry, 1998, 36, 167-176.	5.8	30
28	A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant Journal, 1998, 16, 385-392.	5.7	202
29	Developmental Regulation of Cell Interactions in theArabidopsis fiddlehead-1Mutant: A Role for the Epidermal Cell Wall and Cuticle. Developmental Biology, 1997, 189, 311-321.	2.0	184
30	Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant Journal, 1997, 12, 335-345.	5.7	256
31	Elements of an archaeal promoter defined by mutational analysis. Nucleic Acids Research, 1992, 20, 5423-5428.	14.5	143
32	Identification and characterization of a defective SSV1 genome integrated into a tRNA gene in the archaebacterium Sulfolobus sp. B12. Molecular Genetics and Genomics, 1990, 221, 65-71.	2.4	36
33	Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Research, 1989, 17, 1907-1914.	14.5	277
34	Comparative evaluation of gene expression in archaebacteria. FEBS Journal, 1988, 173, 473-482.	0.2	111
35	Analysis of transcription in the archaebacteriumSulfolobusindicates that archaebacterial promoters are homologous to eukaryotic pol II promoters. Nucleic Acids Research, 1988, 16, 1-19.	14.5	298
36	Transcription termination in the archaebacteriumSulfolobus: signal structures and linkage to transcription initiation. Nucleic Acids Research, 1988, 16, 2445-2460.	14.5	126

WOLF-DIETER REITER

#	Article	IF	CITATIONS
37	Archaebacterial Viruses. Advances in Virus Research, 1988, 34, 143-188.	2.1	37
38	Putative promoter elements for the ribosomal RNA genes of the thermoacidophilic archaebacteriumSulfolobussp. strain B12. Nucleic Acids Research, 1987, 15, 5581-5595.	14.5	56
39	Identification and characterization of the genes encoding three structural proteins of the Sulfolobus virus-like particle SSV1. Molecular Genetics and Genomics, 1987, 206, 144-153.	2.4	57
40	Gene expression in archaebacteria: Physical mapping of constitutive and UV-inducible transcripts from the Sulfolobus virus-like particle SSV1. Molecular Genetics and Genomics, 1987, 209, 270-275.	2.4	78
41	Positively supercoiled DNA in a virus-like particle of an archaebacterium. Nature, 1986, 321, 256-258.	27.8	112
42	Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Archives of Microbiology, 1982, 132, 297-303.	2.2	91