Stefan P Clerens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9433067/publications.pdf

Version: 2024-02-01

91 3,028 31 papers citations h-index

1 50 dex g-index

91 91 docs citations

91 times ranked 3071 citing authors

#	Article	IF	CITATIONS
1	The effects of blanching on composition and modification of proteins in navy beans (Phaseolus) Tj ETQq1 1 0.78	343]4 rgBT 4.2	「/Qyerlock 10
2	From Natural Xanthones to Synthetic C-1 Aminated 3,4-Dioxygenated Xanthones as Optimized Antifouling Agents. Marine Drugs, 2021, 19, 638.	2.2	6
3	Redox proteomics analysis of hair shaft proteins upon hydrothermal and alkaline insult. International Journal of Cosmetic Science, 2021, , .	1.2	1
4	Multi-parameter evaluation of the effect of processing conditions on meat protein modification. Heliyon, 2020, 6, e04185.	1.4	6
5	The wool proteome and fibre characteristics of three distinct genetic ovine breeds from Portugal. Journal of Proteomics, 2020, 225, 103853.	1.2	10
6	Changes in Milk Protein Interactions and Associated Molecular Modification Resulting from Thermal Treatments and Storage. Journal of Food Science, 2019, 84, 1737-1745.	1.5	21
7	Differences between ultrastructure and protein composition in straight hair fibres. Zoology, 2019, 133, 40-53.	0.6	12
8	A Multi-Bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides. Marine Drugs, 2019, 17, 111.	2.2	22
9	Improved Detection and Fragmentation of Disulphide-Linked Peptides. Methods and Protocols, 2018, 1, 33.	0.9	O
10	The effects of a wool hydrolysate on short-chain fatty acid production and fecal microbial composition in the domestic cat (Felis catus). Food and Function, 2018, 9, 4107-4121.	2.1	9
11	Photo-oxidation of whey proteins: Molecular markers of modification. International Dairy Journal, 2017, 66, 56-60.	1.5	12
12	Cookingâ€Induced Protein Modifications in Meat. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 141-159.	5.9	152
13	Molecular modification associated with the heat treatment of bovine milk. International Dairy Journal, 2017, 73, 74-83.	1.5	24
14	In silico modeling of protein hydrolysis by endoproteases: a case study on pepsin digestion of bovine lactoferrin. Food and Function, 2017, 8, 4404-4413.	2.1	9
15	Application of a Mass Spectrometric Approach to Detect the Presence of Fatty Acid Biosynthetic Phosphopeptides. Protein Journal, 2016, 35, 163-170.	0.7	9
16	Proteomic investigation of protein profile changes and amino acid residue-level modification in cooked lamb longissimus thoracis et lumborum: The effect of roasting. Meat Science, 2016, 119, 80-88.	2.7	31
17	Proteomic and peptidomic differences and similarities between four muscle types from New Zealand raised Angus steers. Meat Science, 2016, 121, 53-63.	2.7	15
18	Oxidative Modification in Human Hair: The Effect of the Levels of Cu (<scp>II</scp>) lons, <scp>UV</scp> Exposure and Hair Pigmentation. Photochemistry and Photobiology, 2016, 92, 144-149.	1.3	15

#	Article	IF	CITATIONS
19	Proteomic tracking of hydrothermal Maillard and redox modification in lactoferrin and \hat{l}^2 -lactoglobulin: Location of lactosylation, carboxymethylation, and oxidation sites. Journal of Dairy Science, 2016, 99, 3295-3304.	1.4	27
20	Mapping the accessibility of the disulfide crosslink network in the wool fiber cortex. Proteins: Structure, Function and Bioinformatics, 2015, 83, 224-234.	1.5	18
21	Application of redox proteomics to the study of oxidative degradation products in archaeological wool. Journal of Cultural Heritage, 2015, 16, 896-903.	1.5	12
22	Method developments to extract proteins from oil palm chromoplast for proteomic analysis. SpringerPlus, 2015, 4, 791.	1.2	11
23	In-depth characterisation of the lamb meat proteome from longissimus lumborum. EuPA Open Proteomics, 2015, 6, 28-41.	2.5	16
24	The proteomics of wool fibre morphogenesis. Journal of Structural Biology, 2015, 191, 341-351.	1.3	34
25	Proteomic Investigation of Protein Profile Changes and Amino Acid Residue Level Modification in Cooked Lamb Meat: The Effect of Boiling. Journal of Agricultural and Food Chemistry, 2015, 63, 9112-9123.	2.4	29
26	Data for in-depth characterisation of the lamb meat proteome from longissimus lumborum. Data in Brief, 2015, 3, 143-148.	0.5	7
27	Proteomic Differences between Listeria monocytogenes Isolates from Food and Clinical Environments. Pathogens, 2014, 3, 920-933.	1.2	9
28	The in vitro digestibility of beef varies with its inherent ultimate pH. Food and Function, 2014, 5, 2759-2767.	2.1	20
29	Spatial and temporal mass spectrometric profiling and imaging of lipid degradation in bovine M. longissimus dorsi lumborum. Journal of Food Composition and Analysis, 2014, 33, 203-209.	1.9	14
30	Influence of feed restriction on the wool proteome: A combined iTRAQ and fiber structural study. Journal of Proteomics, 2014, 103, 170-177.	1.2	37
31	Ionic liquid-assisted extraction of wool keratin proteins as an aid to MS identification. Analytical Methods, 2014, 6, 7305-7311.	1.3	16
32	Modeling Deamidation in Sheep \hat{l}_{\pm} -Keratin Peptides and Application to Archeological Wool Textiles. Analytical Chemistry, 2014, 86, 567-575.	3.2	35
33	Effect of beef ultimate pH and large structural protein changes with aging on meat tenderness. Meat Science, 2014, 98, 637-645.	2.7	82
34	Efferent intestinal lymph protein responses in nematode-resistant, -resilient and -susceptible lambs under challenge with Trichostrongylus colubriformis. Journal of Proteomics, 2014, 109, 356-367.	1,2	3
35	Effect of Cooking on Meat Proteins: Mapping Hydrothermal Protein Modification as a Potential Indicator of Bioavailability. Journal of Agricultural and Food Chemistry, 2014, 62, 8187-8196.	2.4	59
36	LC MS/MS identification of large structural proteins from bull muscle and their degradation products during post mortem storage. Food Chemistry, 2014, 150, 137-144.	4.2	30

#	Article	IF	CITATIONS
37	Thermal effects of ionic liquid dissolution on the structures and properties of regenerated wool keratin. Polymer Degradation and Stability, 2014, 108, 108-115.	2.7	77
38	Skin Gland Morphology and Secretory Peptides in Naturalized <i>Litoria</i> Species in New Zealand. Journal of Herpetology, 2013, 47, 565-574.	0.2	1
39	Characterisation of novel αâ€keratin peptide markers for species identification in keratinous tissues using mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 2685-2698.	0.7	46
40	Proteomic evaluation of the biodegradation of wool fabrics in experimental burials. International Biodeterioration and Biodegradation, 2013, 80, 48-59.	1.9	48
41	Redox proteomic evaluation of bleaching and alkali damage in human hair. International Journal of Cosmetic Science, 2013, 35, 555-561.	1.2	23
42	Protein Expression Dynamics during Postnatal Mouse Brain Development. Journal of Experimental Neuroscience, 2013, 7, JEN.S12453.	2.3	15
43	Human Oral Isolate Lactobacillus fermentum AGR1487 Reduces Intestinal Barrier Integrity by Increasing the Turnover of Microtubules in Caco-2 Cells. PLoS ONE, 2013, 8, e78774.	1.1	14
44	Interspecies Comparison of Morphology, Ultrastructure, and Proteome of Mammalian Keratin Fibers of Similar Diameter. Journal of Agricultural and Food Chemistry, 2012, 60, 2434-2446.	2.4	31
45	Unravelling the proteome of wool: Towards markers of wool quality traits. Journal of Proteomics, 2012, 75, 4315-4324.	1.2	20
46	An Updated Nomenclature for Keratin-Associated Proteins (KAPs). International Journal of Biological Sciences, 2012, 8, 258-264.	2.6	68
47	Proteomic Profiling of the Photoâ€Oxidation of Silk Fibroin: Implications for Historic Tinâ€Weighted Silk. Photochemistry and Photobiology, 2012, 88, 1217-1226.	1.3	25
48	Combination of acid labile detergent and C18 Emporeâ, disks for improved identification and sequence coverage of in-gel digested proteins. Analytical and Bioanalytical Chemistry, 2011, 400, 415-421.	1.9	12
49	Differential polymorphism in cutaneous glands of archaic <i>Leiopelma</i> species. Journal of Morphology, 2011, 272, 1116-1130.	0.6	13
50	Unexpected Presence of Graminan- and Levan-Type Fructans in the Evergreen Frost-Hardy Eudicot <i>Pachysandra terminalis</i> (Buxaceae): Purification, Cloning, and Functional Analysis of a 6-SST/6-SFT Enzyme Â. Plant Physiology, 2011, 155, 603-614.	2.3	53
51	MALDI-MS redox lipidomics applied to human hair: A first look. International Journal of Trichology, 2011, 3, 25.	0.1	4
52	Characterisation of low abundance wool proteins through novel differential extraction techniques. Electrophoresis, 2010, 31, 1937-1946.	1.3	25
53	Electrophoretic mapping of highly homologous keratins: A novel marker peptide approach. Electrophoresis, 2010, 31, 2894-2902.	1.3	20
54	Developing the wool proteome. Journal of Proteomics, 2010, 73, 1722-1731.	1.2	36

#	Article	IF	CITATIONS
55	Proteomic evaluation and location of UVB-induced photo-oxidation in wool. Journal of Photochemistry and Photobiology B: Biology, 2010, 98, 118-127.	1.7	45
56	Emerging issues with the current keratin-associated protein nomenclature. International Journal of Trichology, 2010, 2, 104.	0.1	17
57	The Proteome of the Wool Cuticle. Journal of Proteome Research, 2010, 9, 2920-2928.	1.8	40
58	Photoproducts Formed in the Photoyellowing of Collagen in the Presence of a Fluorescent Whitening Agent. Photochemistry and Photobiology, 2009, 85, 1314-1321.	1.3	14
59	Higher sequence coverage and improved confidence in the identification of cysteine-rich proteins from the wool cuticle using combined chemical and enzymatic digestion. Journal of Proteomics, 2009, 73, 323-330.	1.2	17
60	Protein Expression in Orthocortical and Paracortical Cells of Merino Wool Fibers. Journal of Agricultural and Food Chemistry, 2009, 57, 2174-2180.	2.4	20
61	Direct profiling and identification of peptide expression differences in the pancreas of control and ob/ob mice by imaging mass spectrometry. Proteomics, 2008, 8, 3763-3774.	1.3	43
62	Identification of new regional marker proteins to map mouse brain by 2â€D difference gel electrophoresis screening. Electrophoresis, 2008, 29, 1518-1524.	1.3	3
63	Purification, cloning and functional differences of a third fructan 1-exohydrolase (1-FEHw3) from wheat (Triticum aestivum). Physiologia Plantarum, 2008, 133, 242-253.	2.6	28
64	Anti–α-enolase Antibodies in Patients with Inflammatory Bowel Disease. Clinical Chemistry, 2008, 54, 534-541.	1.5	41
65	Direct profiling of myelinated and demyelinated regions in mouse brain by imaging mass spectrometry. International Journal of Mass Spectrometry, 2007, 260, 185-194.	0.7	23
66	An organelle proteomic method to study neurotransmissionâ€related proteins, applied to a neurodevelopmental model of schizophrenia. Proteomics, 2007, 7, 3569-3579.	1.3	40
67	The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae. New Phytologist, 2007, 173, 50-62.	3.5	58
68	Nâ€glycosylation affects substrate specificity of chicory fructan 1â€exohydrolase: evidence for the presence of an inulin binding cleft. New Phytologist, 2007, 176, 317-324.	3.5	26
69	Characterization of the exocuticle a-layer proteins of wool. Experimental Dermatology, 2007, 16, 951-960.	1.4	37
70	CreateTarget andAnalyze This!: new software assisting imaging mass spectrometry on Bruker Reflex IV and Ultraflex II instruments. Rapid Communications in Mass Spectrometry, 2006, 20, 3061-3066.	0.7	28
71	Effect of a singlein ovo injection of 2,3,7,8-tetrachlorodibenzo-p-dioxin on protein expression in liver and ovary of the one-day-old chick analyzed by fluorescent two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 2006, 6, 2576-2585.	1.3	17
72	Development and plasticity-related changes in protein expression patterns in cat visual cortex: A fluorescent two-dimensional difference gel electrophoresis approach. Proteomics, 2006, 6, 3821-3832.	1.3	27

#	Article	IF	Citations
73	Cloning and functional analysis of a high DP fructan:fructan 1-fructosyl transferase from Echinops ritro (Asteraceae): comparison of the native and recombinant enzymes. Journal of Experimental Botany, 2006, 57, 775-789.	2.4	43
74	Purification, cloning and functional characterization of a fructan 6-exohydrolase from wheat (Triticum aestivum L.). Journal of Experimental Botany, 2006, 57, 213-223.	2.4	85
75	Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant, Cell and Environment, 2005, 28, 432-443.	2.8	122
76	Cloning, characterization and functional analysis of novel 6â€kestose exohydrolases (6â€KEHs) from wheat (Triticum aestivum). New Phytologist, 2005, 166, 917-932.	3.5	82
77	Light-induced Fos expression in phosphate-activated glutaminase- and neurofilament protein-immunoreactive neurons in cat primary visual cortex. Brain Research, 2005, 1035, 60-66.	1.1	13
78	First proteomic analysis of Legionella pneumophila based on its developing genome sequence. Research in Microbiology, 2005, 156, 119-129.	1.0	19
79	Sweet Substitute: A software tool for in silico fragmentation of peptide-linked N-glycans. Proteomics, 2004, 4, 629-632.	1.3	24
80	Early dysregulation of hippocampal proteins in transgenic rats with Alzheimer's disease-linked mutations in amyloid precursor protein and presenilin 1. Molecular Brain Research, 2004, 132, 241-259.	2.5	40
81	Identification of cGnRH-II in the median eminence of Japanese quail (Coturnix coturnix japonica). General and Comparative Endocrinology, 2003, 131, 48-56.	0.8	13
82	Reversed-phase high-performance liquid chromatography prefractionation prior to two-dimensional difference gel electrophoresis and mass spectrometry identifies new differentially expressed proteins between striate cortex of kitten and adult cat. Electrophoresis, 2003, 24, 1471-1481.	1.3	79
83	Unexpected presence of fructan 6-exohydrolases (6-FEHs) in non-fructan plants: characterization, cloning, mass mapping and functional analysis of a novel †cell-wall invertase-like†specific 6-FEH from sugar beet (Beta vulgaris L.). Plant Journal, 2003, 36, 697-710.	2.8	61
84	Fluorescent twoâ€dimensional difference gel electrophoresis and mass spectrometry identify ageâ€related protein expression differences for the primary visual cortex of kitten and adult cat. Journal of Neurochemistry, 2003, 85, 193-205.	2.1	65
85	Molecular cloning and differential expression of the cat immediate early gene c-fos. Molecular Brain Research, 2003, 111, 198-210.	2.5	9
86	Fructan 1-Exohydrolases. \hat{l}^2 -(2,1)-Trimmers during Graminan Biosynthesis in Stems of Wheat? Purification, Characterization, Mass Mapping, and Cloning of Two Fructan 1-Exohydrolase Isoforms,. Plant Physiology, 2003, 131, 621-631.	2.3	137
87	Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15247-15252.	3.3	172
88	Differential expression of brain proteins in glycogen synthase kinase-3 transgenic mice: A proteomics point of view. Proteomics, 2002, 2, 94-104.	1.3	65
89	Differential expression of c-fos in subtypes of GABAergic cells following sensory stimulation in the cat primary visual cortex. European Journal of Neuroscience, 2002, 16, 1620-1626.	1.2	20
90	Identification and characterization of novel chromograninâ€fB-derived peptides from porcine chromaffin granules by liquid chromatography/electrospray tandem MS. FEBS Journal, 2001, 268, 235-242.	0.2	14

#	Article	IF	CITATIONS
91	Defoliation Induces Fructan 1-Exohydrolase II in Witloof Chicory Roots. Cloning and Purification of Two Isoforms, Fructan 1-Exohydrolase IIa and Fructan 1-Exohydrolase IIb. Mass Fingerprint of the Fructan 1-Exohydrolase II Enzymes. Plant Physiology, 2001, 126, 1186-1195.	2.3	86