Reinhard Kissner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9432816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hemin-catalyzed oxidative oligomerization of <i>p</i> -aminodiphenylamine (PADPA) in the presence of aqueous sodium dodecylbenzenesulfonate (SDBS) micelles. RSC Advances, 2022, 12, 13154-13167.	3.6	5
2	Application of an enzymatic cascade reaction for the synthesis of the emeraldine salt form of polyaniline. Chemical Papers, 2021, 75, 5071-5085.	2.2	5
3	Thinking Outside the Cage: A New Hypothesis That Accounts for Variable Yields of Radicals from the Reaction of CO ₂ with ONOO [–] . Chemical Research in Toxicology, 2020, 33, 1516-1527.	3.3	10
4	Main-chain scission of individual macromolecules induced by solvent swelling. Chemical Science, 2019, 10, 6125-6139.	7.4	13
5	Effect of Template Type on the <i>Trametes versicolor</i> Laccase-Catalyzed Oligomerization of the Aniline Dimer <i>p</i> -Aminodiphenylamine (PADPA). ACS Omega, 2019, 4, 2931-2947.	3.5	7
6	Effect of template type on the preparation of the emeraldine salt form of polyaniline (PANI-ES) with horseradish peroxidase isoenzyme C (HRPC) and hydrogen peroxide. RSC Advances, 2019, 9, 33080-33095.	3.6	15
7	Determination of the formal redox potentials of the cyanhaemoglobin/cyanmethaemoglobin and the myoglobin/metmyoglobin couples at neutral pH. Bioelectrochemistry, 2018, 120, 83-86.	4.6	1
8	How experimental details matter. The case of a laccase-catalysed oligomerisation reaction. RSC Advances, 2018, 8, 33229-33242.	3.6	7
9	Reaction of CO ₂ with ONOO [–] : One Molecule of CO ₂ Is Not Enough. Chemical Research in Toxicology, 2018, 31, 721-730.	3.3	12
10	Enzymatic Synthesis of Highly Electroactive Oligoanilines from a <i>p</i> -Aminodiphenylamine/Aniline Mixture with Anionic Vesicles as Templates. Langmuir, 2018, 34, 9153-9166.	3.5	13
11	Enhanced chlordecone (Kepone) removal by FeO-nanoparticles loaded on activated carbon. Journal of Environmental Chemical Engineering, 2017, 5, 1608-1617.	6.7	12
12	The influence of anionic vesicles on the oligomerization of p-aminodiphenylamine catalyzed by horseradish peroxidase and hydrogen peroxide. Synthetic Metals, 2017, 226, 89-103.	3.9	22
13	Low-Temperature Trapping of Intermediates in the Reaction of NO [•] with O ₂ . Inorganic Chemistry, 2017, 56, 4846-4851.	4.0	4
14	Electrode Potentials of <scp>l</scp> -Tryptophan, <scp>l</scp> -Tyrosine, 3-Nitro- <scp>l</scp> -tyrosine, 2,3-Difluoro- <scp>l</scp> -tyrosine, and 2,3,5-Trifluoro- <scp>l</scp> -tyrosine. Biochemistry, 2016, 55, 2849-2856.	2.5	21
15	Insight into the template effect of vesicles on the laccase-catalyzed oligomerization of N-phenyl-1,4-phenylenediamine from Raman spectroscopy and cyclic voltammetry measurements. Scientific Reports, 2016, 6, 30724.	3.3	16
16	Haptoglobin Preserves Vascular Nitric Oxide Signaling during Hemolysis. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1111-1122.	5.6	73
17	Primary photochemistry of peroxynitrite in aqueous solution. Chemical Physics Letters, 2015, 641, 187-192.	2.6	5
18	Redox Properties and Activity of Iron–Citrate Complexes: Evidence for Redox Cycling. Chemical Research in Toxicology, 2015, 28, 604-614.	3.3	46

#	Article	IF	CITATIONS
19	Reaction Steps in Nitrogen Monoxide Autoxidation. Advances in Inorganic Chemistry, 2015, 67, 335-354.	1.0	6
20	Enzymatic polymerization of pyrrole with Trametes versicolor laccase and dioxygen in the presence of vesicles formed from AOT (sodium bis-(2-ethylhexyl) sulfosuccinate) as templates. Synthetic Metals, 2015, 200, 123-134.	3.9	20
21	Synthesis, characterization and initial evaluation of 5-nitro-1-(trifluoromethyl)-3H-1λ3,2-benziodaoxol-3-one. Beilstein Journal of Organic Chemistry, 2014, 10, 1-6.	2.2	25
22	The use of Trametes versicolor laccase for the polymerization of aniline in the presence of vesicles as templates. Enzyme and Microbial Technology, 2014, 55, 72-84.	3.2	37
23	Electrode reactions of iron oxide–hydroxide colloids. Dalton Transactions, 2014, 43, 15407-15413.	3.3	3
24	ONOOH does not react with H2: Potential beneficial effects of H2 as an antioxidant by selective reaction with hydroxyl radicals and peroxynitrite. Free Radical Biology and Medicine, 2014, 75, 191-194.	2.9	31
25	Efficient Polymerization of the Aniline Dimer <i>p</i> -Aminodiphenylamine (PADPA) with <i>Trametes versicolor</i> Laccase/O ₂ as Catalyst and Oxidant and AOT Vesicles as Templates. ACS Catalysis, 2014, 4, 3421-3434.	11.2	38
26	Reaction of Ferrate(VI) with ABTS and Self-Decay of Ferrate(VI): Kinetics and Mechanisms. Environmental Science & Technology, 2014, 48, 5154-5162.	10.0	248
27	A liposomal fluorescence assay to study permeation kinetics of drug-like weak bases across the lipid bilayer. Journal of Controlled Release, 2014, 173, 102-109.	9.9	49
28	Decomposition kinetics of peroxynitrite: influence of pH and buffer. Dalton Transactions, 2013, 42, 9898.	3.3	41
29	Mechanistic aspects of the horseradish peroxidase-catalysed polymerisation of aniline in the presence of AOT vesicles as templates. RSC Advances, 2012, 2, 6478.	3.6	55
30	Peroxynitrous acid: controversy and consensus surrounding an enigmatic oxidant. Dalton Transactions, 2012, 41, 13779.	3.3	61
31	Phosphorousâ€Functionalized Bis(acyl)phosphane Oxides for Surface Modification. Angewandte Chemie - International Edition, 2012, 51, 4648-4652.	13.8	57
32	Aerobic Epoxidation of Olefins Catalyzed by the Cobaltâ€Based Metal–Organic Framework STAâ€12(Co). Chemistry - A European Journal, 2012, 18, 887-898.	3.3	110
33	Water increases rates of epoxidation by Mn(iii)porphyrins/imidazole/IO4â^' in CH2Cl2. Analogy with peroxidase and chlorite dismutase. Dalton Transactions, 2011, 40, 8695.	3.3	21
34	Intermediates in the Autoxidation of Nitrogen Monoxide. Chemistry - A European Journal, 2009, 15, 6161-6168.	3.3	52
35	Peroxynitrate is formed rapidly during decomposition of peroxynitrite at neutral pH. Dalton Transactions, 2009, , 5730.	3.3	42
36	Vesicles as Soft Templates for the Enzymatic Polymerization of Aniline. Langmuir, 2009, 25, 11390-11405.	3.5	69

#	Article	IF	CITATIONS
37	Photon-Initiated Homolysis of Peroxynitrous Acid. Inorganic Chemistry, 2009, 48, 7307-7312.	4.0	8
38	Preparation and Properties of Lithium and Sodium Peroxynitrite. Chemical Research in Toxicology, 2008, 21, 2257-2259.	3.3	4
39	P51. Intermediates in the autoxidation of nitrogen monoxide. Nitric Oxide - Biology and Chemistry, 2008, 19, 54-55.	2.7	0
40	Homolysis of the Peroxynitrite Anion Detected with Permanganate. Inorganic Chemistry, 2007, 46, 10655-10658.	4.0	14
41	Fenton Chemistry and Iron Chelation under Physiologically Relevant Conditions:Â Electrochemistry and Kinetics. Chemical Research in Toxicology, 2006, 19, 1263-1269.	3.3	87
42	Kinetics and Mechanistic Aspects of As(III) Oxidation by Aqueous Chlorine, Chloramines, and Ozone:Â Relevance to Drinking Water Treatment. Environmental Science & Technology, 2006, 40, 3285-3292.	10.0	155
43	Catalysis of Electron Transfer by Selenocysteineâ€. Biochemistry, 2006, 45, 6038-6043.	2.5	95
44	Redox signaling: Bioinorganic chemistry at its best. Journal of Inorganic Biochemistry, 2006, 100, 2079-2086.	3.5	85
45	On the Chemical and Electrochemical One-Electron Reduction of Peroxynitrous Acid. Journal of Physical Chemistry A, 2005, 109, 965-969.	2.5	14
46	Qualitative and Quantitative Determination of Nitrite and Nitrate with Ion Chromatography. Methods in Enzymology, 2005, 396, 61-68.	1.0	20
47	Peroxynitrous Acid - Where is the Hydroxyl Radical?. IUBMB Life, 2004, 55, 567-572.	3.4	38
48	Redox Properties of the Iron Complexes of Orally Active Iron ChelatorsCP20, CP502, CP509, andICL670. Helvetica Chimica Acta, 2004, 87, 3021-3034.	1.6	39
49	Kinetics Evidence for a Complex Between Peroxynitrous Acid and Titanium(IV) ChemInform, 2004, 35, no.	0.0	0
50	Iridium-Imine and -Amine Complexes Relevant to the (S)-Metolachlor Process: Structures, Exchange Kinetics, and C?H Activation by Irl Causing Racemization. Chemistry - A European Journal, 2004, 10, 4546-4555.	3.3	32
51	Kinetics Evidence for a Complex between Peroxynitrous Acid and Titanium(IV). Inorganic Chemistry, 2004, 43, 4805-4807.	4.0	5
52	Preventing Nitrite Contamination in Tetramethylammonium Peroxynitrite Solutions. Inorganic Chemistry, 2004, 43, 6519-6521.	4.0	15
53	Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Letters, 2004, 571, 161-165.	2.8	174
54	Rapid scavenging of peroxynitrous acid by monohydroascorbate. Free Radical Biology and Medicine, 2003, 35, 1529-1537.	2.9	28

#	Article	IF	CITATIONS
55	Oxidation of Nitrite by Peroxynitrous Acid. Journal of Physical Chemistry A, 2003, 107, 1763-1769.	2.5	29
56	Evaluation of Activation Volumes for the Conversion of Peroxynitrous to Nitric Acid. Journal of Physical Chemistry A, 2003, 107, 11261-11263.	2.5	9
57	Product Distribution of Peroxynitrite Decay as a Function of pH, Temperature, and Concentration. Journal of the American Chemical Society, 2002, 124, 234-239.	13.7	110
58	On the Oxidation of Cytochrome c by Hypohalous Acids. Archives of Biochemistry and Biophysics, 2001, 389, 110-122.	3.0	48
59	Oxidation of NADH by Chloramines and Chloramides and Its Activation by Iodide and by Tertiary Amines. Archives of Biochemistry and Biophysics, 2001, 393, 297-307.	3.0	21
60	Gibbs Energy of Formation of Peroxynitrite. Chemical Research in Toxicology, 2001, 14, 348-350.	3.3	12
61	Hydrolysis and Photolysis of Tris(tetraethylammonium) Pentacyanoperoxynitritocobaltate(III): Evidence for a Novel Complex, Pentacyanonitratocobaltate(III). Helvetica Chimica Acta, 2001, 84, 3057-3062.	1.6	Ο
62	Synthesis and Characterization of Tris(tetraethylammonium) Pentacyanoperoxynitritocobaltate(III). Helvetica Chimica Acta, 2000, 83, 748-754.	1.6	36
63	On the Irreversible Destruction of Reduced Nicotinamide Nucleotides by Hypohalous Acids. Archives of Biochemistry and Biophysics, 2000, 380, 181-191.	3.0	66
64	[36] Peroxynitrite studied by stopped-flow spectroscopy. Methods in Enzymology, 1999, 301, 342-352.	1.0	19
65	Conformation of Peroxynitrite:  Determination by Crystallographic Analysis. Chemical Research in Toxicology, 1999, 12, 305-307.	3.3	24
66	Hydrogen Isotope Effect on the Isomerization of Peroxynitrous Acid. Helvetica Chimica Acta, 1998, 81, 1201-1206.	1.6	20
67	Formation and Properties of Peroxynitrite as Studied by Laser Flash Photolysis, High-Pressure Stopped-Flow Technique, and Pulse Radiolysis Volume 10, Number 11, November 1997, pp 1285â^'1292. Chemical Research in Toxicology, 1998, 11, 557-557.	3.3	13
68	Can ONOOH Undergo Homolysis?. Chemical Research in Toxicology, 1998, 11, 87-90.	3.3	105
69	Kinetic Study of the Reaction of Glutathione Peroxidase with Peroxynitrite. Chemical Research in Toxicology, 1998, 11, 1398-1401.	3.3	109
70	The hydrolysis of gold(I) in aqueous acetonitrile solutions. Journal of the Chemical Society Dalton Transactions, 1997, , 1773-1778.	1.1	28
71	Hydrolysis of the Organometallic Aqua Ionfac-Triaquatricarbonylrhenium(I). Mechanism, pKa, and Formation Constants of the Polynuclear Hydrolysis Products. Organometallics, 1997, 16, 1833-1840.	2.3	83
72	Formation and Properties of Peroxynitrite as Studied by Laser Flash Photolysis, High-Pressure Stopped-Flow Technique, and Pulse Radiolysis. Chemical Research in Toxicology, 1997, 10, 1285-1292.	3.3	606

#	Article	IF	CITATIONS
73	Kinetic study of the reaction of ebselen with peroxynitrite. FEBS Letters, 1996, 398, 179-182.	2.8	157
74	Halide catalysis of the electrochemical oxidation of gold in acetonitrile. Journal of Electroanalytical Chemistry, 1995, 385, 71-75.	3.8	12
75	Solvated gold(I) in acetonitrile with inert counterions: a versatile starting material for gold(I) chemistry. Journal of the Chemical Society Chemical Communications, 1993, , 136.	2.0	13
76	Adsorptive stripping voltammetry of Ni(II) using fast linear sweeps. Fresenius Zeitschrift Für Analytische Chemie, 1988, 332, 787-790.	0.8	10