
Andrei Constantinescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9432490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of thin micro-architectured panels with extension–bending coupling effects using topology optimization. Computer Methods in Applied Mechanics and Engineering, 2022, 391, 114496.	6.6	7
2	Statistically equivalent surrogate material models: Impact of random imperfections on the elasto-plastic response. Computer Methods in Applied Mechanics and Engineering, 2022, , 115278.	6.6	1
3	Systematic two-scale image analysis of extreme deformations in soft architectured sheets. International Journal of Mechanical Sciences, 2021, 194, 106205.	6.7	4
4	Shape-shifting panel from 3D printed undulated ribbon lattice. Extreme Mechanics Letters, 2021, 42, 101089.	4.1	5
5	Tensile and ductile fracture properties of as-printed 316L stainless steel thin walls obtained by directed energy deposition. Additive Manufacturing, 2021, 37, 101664.	3.0	8
6	FIB manufactured microstructures with low coefficients of thermal expansion. Mechanics Research Communications, 2021, 114, 103667.	1.8	2
7	Crushing of additively manufactured thin-walled metallic lattices: Two-scale strain localization analysis. Mechanics of Materials, 2021, 160, 103915.	3.2	8
8	Design and testing of 3D-printed micro-architectured polymer materials exhibiting a negative Poisson's ratio. Continuum Mechanics and Thermodynamics, 2020, 32, 433-449.	2.2	21
9	High resolution digital image correlation for microstructural strain analysis of a stainless steel repaired by Directed Energy Deposition. Materials Letters, 2020, 270, 127632.	2.6	21
10	A Statistical Framework for Generating Microstructures of Two-Phase Random Materials: Application to Fatigue Analysis. Multiscale Modeling and Simulation, 2020, 18, 21-43.	1.6	10
11	Influence of interlayer dwell time on the microstructure of Inconel 718 Laser Cladded components. Optics and Laser Technology, 2020, 128, 106218.	4.6	32
12	Self-heating behavior during cyclic loadings of 316L stainless steel specimens manufactured or repaired by Directed Energy Deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 786, 139476.	5.6	29
13	Identification of the material behavior of adhesive joints under dynamic multiaxial loadings. International Journal of Impact Engineering, 2019, 133, 103355.	5.0	4
14	Computational fatigue assessment of mooring chains under tension loading. Engineering Failure Analysis, 2019, 106, 104043.	4.0	7
15	Design of multi-layer materials using inverse homogenization and a level set method. Computer Methods in Applied Mechanics and Engineering, 2019, 346, 388-409.	6.6	20
16	A critical comparison of shear tests for adhesive joints. International Journal of Adhesion and Adhesives, 2018, 84, 63-79.	2.9	26
17	A New Multiaxial Specimen for Determining the Dynamic Properties of Adhesive Joints. Experimental Mechanics, 2018, 58, 1207-1219.	2.0	2
18	A computational approach based on a multiaxial fatigue criterion combining phase transformation and shakedown response for the fatigue life assessment of Nitinol stents. Journal of Intelligent Material Systems and Structures, 2018, 29, 3710-3724.	2.5	8

#	Article	IF	CITATIONS
19	A modified dissipated energy fatigue criterion to consider the thermo-oxidative ageing of electrically conductive silicone adhesive joints. International Journal of Fatigue, 2018, 116, 68-79.	5.7	7
20	Stress relaxation in polymeric microlattice materials. Materials and Design, 2017, 130, 433-441.	7.0	19
21	Graphitization and amorphization of textured carbon using high-energy nanosecond laser pulses. Carbon, 2016, 105, 227-232.	10.3	6
22	Micromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue. International Journal of Fatigue, 2016, 87, 405-417.	5.7	10
23	Microstructure and deformation mechanisms of a solid propellant using 1 H NMR spectroscopy. Fuel, 2015, 148, 39-47.	6.4	28
24	Molecular Origin of the Influence of the Temperature on the Loss Factor of a Solid Propellant. Propellants, Explosives, Pyrotechnics, 2015, 40, 469-478.	1.6	5
25	Influence of fillers and bonding agents on the viscoelasticity of highly filled elastomers. Journal of Applied Polymer Science, 2014, 131, .	2.6	4
26	Effect of the sol fraction and hydrostatic deformation on the viscoelastic behavior of prestrained highly filled elastomers. Journal of Applied Polymer Science, 2013, 127, 1772-1780.	2.6	17
27	TMF–LCF life assessment of a Lost Foam Casting A319 aluminum alloy. International Journal of Fatigue, 2013, 53, 75-81.	5.7	48
28	Influence of orthogonal prestrain on the viscoelastic behaviour of highly-filled elastomers. Polymer Testing, 2013, 32, 375-384.	4.8	10
29	Fracture of a borosilicate glass under triaxial tension. Mechanics of Materials, 2013, 57, 15-29.	3.2	15
30	TMF criteria for Lost Foam Casting aluminum alloys. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 349-360.	3.4	19
31	A non-iterative sampling approach using noise subspace projection for EIT. Inverse Problems, 2012, 28, 075015.	2.0	3
32	The inverse problem of seismic fault determination using part time measurements. Journal of Mechanics of Materials and Structures, 2012, 7, 997-1007.	0.6	1
33	Fast time-scale average for a mesoscopic high cycle fatigue criterion. International Journal of Fatigue, 2012, 45, 39-47.	5.7	4
34	Influence of prestrain on mechanical properties of highly-filled elastomers: Measurements and modeling. Polymer Testing, 2012, 31, 978-986.	4.8	30
35	A computational approach for the fatigue design of threaded connections. International Journal of Fatigue, 2011, 33, 610-623.	5.7	25
36	Semianalytical solution for the stress distribution in notched tubes. International Journal of Fatigue, 2011. 33. 557-567.	5.7	6

#	Article	IF	CITATIONS
37	Behavior, damage and fatigue life assessment of lost foam casting aluminum alloys under thermo-mechanical fatigue conditions. Procedia Engineering, 2010, 2, 1145-1154.	1.2	30
38	Modeling of thermal shock-induced damage in a borosilicate glass. Mechanics of Materials, 2010, 42, 863-872.	3.2	31
39	Plasticity and asperity-induced fatigue crack closure under mixed-mode loading. International Journal of Fatigue, 2010, 32, 1612-1619.	5.7	11
40	A Modeling Approach to Predict Fretting Fatigue on Highly Loaded Blade Roots. Journal of Engineering for Gas Turbines and Power, 2010, 132, .	1.1	9
41	Dissipative aspects in high cycle fatigue. Mechanics of Materials, 2009, 41, 483-494.	3.2	54
42	Crack initiation under thermal fatigue: An overview of CEA experience. Part I: Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue. International Journal of Fatigue, 2009, 31, 587-600.	5.7	62
43	Crack initiation under thermal fatigue: An overview of CEA experiencePart II (of II): Application of various criteria to biaxial thermal fatigue tests and a first proposal to improve the estimation of the thermal fatigue damage. International Journal of Fatigue, 2009, 31, 1196-1210.	5.7	36
44	The influence of indenter bluntness on the apparent contact stiffness of thin coatings. Thin Solid Films, 2009, 517, 4835-4844.	1.8	24
45	Numerical exploration of the Dang Van high cycle fatigue criterion: application to gradient effects. Journal of Mechanics of Materials and Structures, 2009, 4, 293-308.	0.6	20
46	On the reconstruction of residual stresses after matter removal in rods. Comptes Rendus - Mecanique, 2008, 336, 69-78.	2.1	1
47	A multiscale approach of fatigue and shakedown for notched structures. Theoretical and Applied Fracture Mechanics, 2007, 48, 140-151.	4.7	27
48	A computational lifetime prediction of a thermal shock experiment. Part I: thermomechanical modelling and lifetime prediction. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29, 175-182.	3.4	20
49	A computational lifetime prediction of a thermal shock experiment. Part II: discussion on difference fatigue criteria. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29, 219-227.	3.4	28
50	Estimation of the mesoscopic thermoplastic dissipation in High-Cycle Fatigue. Comptes Rendus - Mecanique, 2006, 334, 373-379.	2.1	9
51	A comparison of lifetime prediction methods for a thermal fatigue experiment. International Journal of Fatigue, 2006, 28, 692-706.	5.7	50
52	Identification of Poroelastic Constants of "Tight―Rocks from Laboratory Tests. International Journal of Geomechanics, 2006, 6, 201-208.	2.7	7
53	Sensitivity analysis for parameter identification in quasi-static poroelasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29, 163-185.	3.3	21
54	Inverse problems in elasticity. Inverse Problems, 2005, 21, R1-R50.	2.0	315

#	Article	IF	CITATIONS
55	A computational approach to thermomechanical fatigue. International Journal of Fatigue, 2004, 26, 805-818.	5.7	108
56	Critère de fatigue polycyclique pour des matériaux anisotropesÂ: application aux monocristaux. Comptes Rendus - Mecanique, 2004, 332, 115-121.	2.1	12
57	Numerical identification of linear cracks in 2D elastodynamics using the instantaneous reciprocity gap. Inverse Problems, 2004, 20, 993-1001.	2.0	43
58	Dissipation and fatigue damage. Materialpruefung/Materials Testing, 2004, 46, 524-530.	2.2	7
59	A unified approach for high and low cycle fatigue based on shakedown concepts. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 561-568.	3.4	65
60	Numerical and experimental modal analysis of the reed and pipe of a clarinet. Journal of the Acoustical Society of America, 2003, 113, 2874-2883.	1.1	23
61	Fatigue design of structures under thermomechanical loadings. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25, 1199-1206.	3.4	104
62	Mechanical model of the inspiratory pump. Journal of Biomechanics, 2002, 35, 139-145.	2.1	10
63	On the identification of elastoviscoplastic constitutive laws from indentation tests. Inverse Problems in Science and Engineering, 2001, 9, 19-44.	0.5	37
64	Diffraction acoustique inverse de fissure plane: Solution explicite pour un solide borné. Comptes Rendus De L'Academie De Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie, 1999, 327, 971-976.	0.1	5
65	On the identification of elastic moduli from displacement-force boundary measurements. Inverse Problems in Science and Engineering, 1995, 1, 293-313.	0.5	38
66	On the inversion of subsurface residual stresses from surface stress measurements. Journal of the Mechanics and Physics of Solids, 1994, 42, 1767-1787.	4.8	27
67	Viscoelastic behavior of filled silicone elastomers and influence of aging in inert and hermetic environment. Continuum Mechanics and Thermodynamics, 0, , .	2.2	1