Jeremy Brandel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9432343/publications.pdf

Version: 2024-02-01

		1040056	839539
19	435	9	18
papers	citations	h-index	g-index
19	19	19	859
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(iii), copper(ii) and zinc(ii) complexes. Dalton Transactions, 2012, 41, 2820.	3.3	180
2	Remarkable Mg2+-selective emission of an azacrown receptor based on Ir(iii) complex. Chemical Communications, 2010, 46, 3958.	4.1	48
3	Metal–Organic Self-Assembled Trefoil Knots for C—Br Bond Activation. ACS Catalysis, 2019, 9, 1907-1914.	11.2	30
4	Kinetically Inert Bispidol-Based Cu(II) Chelate for Potential Application to ^{64/67} Cu Nuclear Medicine and Diagnosis. Inorganic Chemistry, 2015, 54, 4431-4444.	4.0	27
5	Sequential Delivery of Doxorubicin and Zoledronic Acid to Breast Cancer Cells by CB[7]-Modified Iron Oxide Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40006-40016.	8.0	26
6	Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants. Archives of Toxicology, 2020, 94, 3105-3123.	4.2	24
7	A Bispidol Chelator with a Phosphonate Pendant Arm: Synthesis, Cu(II) Complexation, and ⁶⁴ Cu Labeling. Inorganic Chemistry, 2017, 56, 11738-11752.	4.0	22
8	The influence of linkages between 1-hydroxy-2(1H)-pyridinone coordinating groups and a tris(2-aminoethyl)amine core in a novel series of synthetic hexadentate iron(III) chelators on antimicrobial activity. Bioorganic Chemistry, 2020, 95, 103465.	4.1	11
9	Vesicles to Concentrate Iron in Lowâ€Iron Media: An Attempt to Mimic Marine Siderophores. Chemistry - A European Journal, 2008, 14, 3680-3686.	3.3	10
10	Molecular Tools for the Self-Assembly of Bisporphyrin Photodyads: A Comprehensive Physicochemical and Photophysical Study. Inorganic Chemistry, 2009, 48, 3743-3754.	4.0	10
11	Recognition of Imidazoles by Strapped Zinc(II) Porphyrin Receptors:  Insight into the Induced-Fit Mechanism. Inorganic Chemistry, 2007, 46, 9534-9536.	4.0	9
12	Tetraphosphonated thiophene ligand: mixing the soft and the hard. Dalton Transactions, 2014, 43, 9070-9080.	3.3	8
13	Novel 1-hydroxypyridin-2-one metal chelators prevent and rescue ubiquitin proteasomal-related neuronal injury in an in vitro model of Parkinson's disease. Archives of Toxicology, 2020, 94, 813-831.	4.2	8
14	Glycosiderophores: Synthesis of tris-hydroxamate siderophores based on a galactose or glycero central scaffold, Fe(III) complexation studies. Journal of Inorganic Biochemistry, 2012, 112, 59-67.	3.5	7
15	Structural and Thermodynamics Studies on Polyaminophosphonate Ligands for Uranyl Decorporation. Inorganic Chemistry, 2021, 60, 2149-2159.	4.0	7
16	Polyazulene-Based Materials for Heavy Metal Ion Detection. 3. (E)-5-((6-t-Butyl-4,8-dimethylazulen-1-yl)) Tj ETQq(0 0 _{2.2} rgBT	· /Oyerlock 10
17	Synthesis, physicochemical characterization and neuroprotective evaluation of novel 1-hydroxypyrazin-2(1H)-one iron chelators in an in vitro cell model of Parkinson's disease. Dalton Transactions, 2022, , .	3.3	3
18	From Molecular to Nanostructured Iron Complexes of Amphiphilic Chelators Based on 8-Hydroxyquinoline Subunits - Evidence of Self-Assembled Edifices Mimicking Siderophores from Marine Bacteria. European Journal of Inorganic Chemistry, 2009, 2009, 86-92.	2.0	2

#	ŧ	Article	IF	CITATIONS
1	.9	1-Hydroxy-2(1H)-pyridinone-Based Chelators with Potential Catechol O-Methyl Transferase Inhibition and Neurorescue Dual Action against Parkinson's Disease. Molecules, 2022, 27, 2816.	3.8	0