
Filipa V.M. Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9431506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Pressure Processing Applications in Plant Foods. Foods, 2022, 11, 223.	1.9	12
2	The Effect of Processing Methods on Food Quality and Human Health: Latest Advances and Prospects. Foods, 2022, 11, 611.	1.9	2
3	Thermal, High Pressure, and Ultrasound Inactivation of Various Fruit Cultivars' Polyphenol Oxidase: Kinetic Inactivation Models and Estimation of Treatment Energy Requirement. Applied Sciences (Switzerland), 2022, 12, 1864.	1.3	17
4	Pasteurization of Beer by Non-Thermal Technologies. Frontiers in Food Science and Technology, 2022, 1, .	1.2	8
5	Antimicrobial Properties against Human Pathogens of Medicinal Plants from New Zealand. Applied Microbiology, 2022, 2, 357-366.	0.7	2
6	Control of Enzymatic Browning in Strawberry, Apple, and Pear by Physical Food Preservation Methods: Comparing Ultrasound and High-Pressure Inactivation of Polyphenoloxidase. Foods, 2022, 11, 1942.	1.9	10
7	Kanuka bush leaves for Alzheimer's disease: Improved inhibition of β-secretase enzyme, antioxidant capacity and yield of extracts by ultrasound assisted extraction. Food and Bioproducts Processing, 2021, 128, 109-120.	1.8	6
8	Enumeration of Brettanomyces in Wine Using Impedance. Applied Microbiology, 2021, 1, 352-360.	0.7	2
9	Emerging Non-Thermal Technologies as Alternative to SO2 for the Production of Wine. Foods, 2021, 10, 2175.	1.9	15
10	Non-Thermal High Pressure Processing, Pulsed Electric Fields and Ultrasound Preservation of Five Different Table Wines. Beverages, 2021, 7, 69.	1.3	7
11	Ultrasound assisted thermal inactivation of spores in foods: Pathogenic and spoilage bacteria, molds and yeasts. Trends in Food Science and Technology, 2020, 105, 402-415.	7.8	35
12	Improvement of butyrylcholinesterase enzyme inhibition and medicinal properties of extracts of Aristotelia serrata leaves by ultrasound extraction. Food and Bioproducts Processing, 2020, 124, 445-454.	1.8	8
13	Inhibition of enzymes important for Alzheimer's disease by antioxidant extracts prepared from 15 New Zealand medicinal trees and bushes. Journal of the Royal Society of New Zealand, 2020, 50, 538-551.	1.0	8
14	Resistant moulds as pasteurization target for cold distributed high pressure and heat assisted high pressure processed fruit products. Journal of Food Engineering, 2020, 282, 109998.	2.7	19
15	Polyphenoloxidase in Fruit and Vegetables: Inactivation by Thermal and Non-thermal Processes. , 2019, , 287-301.		11
16	Nonthermal Preservation of Wine. , 2019, , 203-235.		5
17	Heat assisted HPP for the inactivation of bacteria, moulds and yeasts spores in foods: Log reductions and mathematical models. Trends in Food Science and Technology, 2019, 88, 143-156.	7.8	53
18	Pulsed electric field treatment of red wine: Inactivation of Brettanomyces and potential hazard caused by metal ion dissolution. Innovative Food Science and Emerging Technologies, 2019, 52, 57-65.	2.7	39

FILIPA V.M. SILVA

#	Article	IF	CITATIONS
19	High pressure processing and storage of blueberries: effect on fruit hardness. High Pressure Research, 2018, 38, 80-89.	0.4	11
20	Perspectives of high power ultrasound in food preservation. IOP Conference Series: Materials Science and Engineering, 2018, 345, 012046.	0.3	0
21	SO2, high pressure processing and pulsed electric field treatments of red wine: Effect on sensory, Brettanomyces inactivation and other quality parameters during one year storage. Innovative Food Science and Emerging Technologies, 2018, 48, 204-211.	2.7	39
22	Differences in the resistance of microbial spores to thermosonication, high pressure thermal processing and thermal treatment alone. Journal of Food Engineering, 2018, 222, 292-297.	2.7	35
23	Resistance of Byssochlamys nivea and Neosartorya fischeri mould spores of different age to high pressure thermal processing and thermosonication. Journal of Food Engineering, 2017, 201, 9-16.	2.7	40
24	An insight on the relationship between food compressibility and microbial inactivation during high pressure processing. Journal of Food Science and Technology, 2017, 54, 802-809.	1.4	8
25	Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing. Food Science and Technology International, 2017, 23, 265-276.	1.1	51
26	High pressure processing inactivation of Brettanomyces bruxellensis in seven different table wines. Food Control, 2017, 81, 1-8.	2.8	22
27	Strawberry puree processed by thermal, high pressure, or power ultrasound: Process energy requirements and quality modeling during storage. Food Science and Technology International, 2017, 23, 293-309.	1.1	26
28	High pressure inactivation of Brettanomyces bruxellensis in red wine. Food Microbiology, 2017, 63, 199-204.	2.1	23
29	Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations. International Journal of Food Microbiology, 2017, 263, 17-25.	2.1	25
30	Comparing high pressure thermal processing and thermosonication with thermal processing for the inactivation of bacteria, moulds, and yeasts spores in foods. Journal of Food Engineering, 2017, 214, 90-96.	2.7	29
31	Alicyclobacillus acidoterrestris spore inactivation by high pressure combined with mild heat: Modeling the effects of temperature and soluble solids. Food Control, 2017, 73, 426-432.	2.8	39
32	Ultrasound assisted thermal pasteurization of beers with different alcohol levels: Inactivation of Saccharomyces cerevisiae ascospores. Journal of Food Engineering, 2017, 198, 45-53.	2.7	34
33	Advances in Thermosonication for the Inactivation of Endogenous Enzymes in Foods. , 2017, , 101-130.		9
34	High-Pressure Processing Effects on Endogenous Enzymes in Fruits and Vegetables. , 2017, , 39-62.		1
35	High pressure thermal processing for the inactivation of Clostridium perfringens spores in beef slurry. Innovative Food Science and Emerging Technologies, 2016, 33, 26-31.	2.7	24
36	Impedance technology reduces the enumeration time of <i>Brettanomyces</i> yeast during beer fermentation. Biotechnology Journal, 2016, 11, 1667-1672.	1.8	8

#	Article	IF	CITATIONS
37	Modeling the inactivation of psychrotrophic Bacillus cereus spores in beef slurry by 600 MPa HPP combined with 38–70 °C: Comparing with thermal processing and estimating the energy requirements. Food and Bioproducts Processing, 2016, 99, 179-187.	1.8	34
38	Nonthermal pasteurization of beer by high pressure processing: modelling the inactivation of <i>saccharomyces cerevisiae</i> ascospores in different alcohol beers. High Pressure Research, 2016, 36, 595-609.	0.4	27
39	High pressure processing and thermosonication of beer: Comparing the energy requirements and Saccharomyces cerevisiae ascospores inactivation with thermal processing and modeling. Journal of Food Engineering, 2016, 181, 35-41.	2.7	45
40	High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris sporesÂin orange juice. Food Control, 2016, 62, 365-372.	2.8	71
41	Modeling the inactivation of Neosartorya fischeri ascospores in apple juice by high pressure, power ultrasound and thermal processing. Food Control, 2016, 59, 530-537.	2.8	98
42	Thermal resistance of Saccharomyces yeast ascospores in beers. International Journal of Food Microbiology, 2015, 206, 75-80.	2.1	21
43	Thermosonication for polyphenoloxidase inactivation in fruits: Modeling the ultrasound and thermal kinetics in pear, apple and strawberry purees at different temperatures. Journal of Food Engineering, 2015, 165, 133-140.	2.7	103
44	High pressure processing of milk: Modeling the inactivation of psychrotrophic Bacillus cereus spores at 38–70 °C. Journal of Food Engineering, 2015, 165, 141-148.	2.7	65
45	Use of power ultrasound to enhance the thermal inactivation of Clostridium perfringens spores in beef slurry. International Journal of Food Microbiology, 2015, 206, 17-23.	2.1	75
46	Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing. International Journal of Food Microbiology, 2015, 214, 129-136.	2.1	81
47	Thermosonication versus thermal processing of skim milk and beef slurry: Modeling the inactivation kinetics of psychrotrophic Bacillus cereus spores. Food Research International, 2015, 67, 67-74.	2.9	80
48	Pulsed Electric Field continuous pasteurization of different types ofÂbeers. Food Control, 2015, 50, 223-229.	2.8	58
49	Modeling the polyphenoloxidase inactivation kinetics in pear, apple and strawberry purees after High Pressure Processing. Journal of Food Engineering, 2015, 147, 89-94.	2.7	69
50	THERMAL PROCESSES Pasteurization. , 2014, , 577-595.		12
51	Synthesis and Antimicrobial Evaluation of Oxazole-2(3H)-thione and 2-Alkylsulfanyl-1,3-oxazole Derivatives. Heterocycles, 2014, 88, 1013.	0.4	4
52	High-Pressure Processing of Manuka Honey: Improvement of Antioxidant Activity, Preservation of Colour and Flow Behaviour. Food and Bioprocess Technology, 2014, 7, 2299-2307.	2.6	31
53	High pressure processing (HPP) of honey for the improvement of nutritional value. Innovative Food Science and Emerging Technologies, 2013, 20, 59-63.	2.7	36
54	High pressure processing, thermal processing and freezing of †Camarosa' strawberry for the inactivation of polyphenoloxidase and control of browning. Food Control, 2013, 33, 424-428.	2.8	52

FILIPA V.M. SILVA

#	Article	IF	CITATIONS
55	Tuning the Bioactivity of Tensioactive Deoxy Glycosides to Structure: Antibacterial Activity Versus Selective Cholinesterase Inhibition Rationalized by Molecular Docking. European Journal of Organic Chemistry, 2013, 2013, 1448-1459.	1.2	7
56	Bacterial spore inactivation at 45–65°C using high pressure processing: Study of Alicyclobacillus acidoterrestris in orange juice. Food Microbiology, 2012, 32, 206-211.	2.1	81
57	Thermal pasteurization requirements for the inactivation of Salmonella in foods. Food Research International, 2012, 45, 695-699.	2.9	101
58	Facile synthesis of oxo-/thioxopyrimidines and tetrazoles C–C linked to sugars as novel non-toxic antioxidant acetylcholinesterase inhibitors. Carbohydrate Research, 2012, 347, 47-54.	1.1	21
59	Non-toxic Salvia sclareoides Brot. extracts as a source of functional food ingredients: Phenolic profile, antioxidant activity and prion binding properties. Food Chemistry, 2012, 132, 1930-1935.	4.2	38
60	Non-proteolytic Clostridium botulinum spores in low-acid cold-distributed foods and design of pasteurization processes. Trends in Food Science and Technology, 2010, 21, 95-105.	7.8	65
61	Synthesis of novel purine nucleosides towards a selective inhibition of human butyrylcholinesterase. Bioorganic and Medicinal Chemistry, 2009, 17, 5106-5116.	1.4	30
62	Phytochemical Profile and Anticholinesterase and Antimicrobial Activities of Supercritical versus Conventional Extracts of Satureja montana. Journal of Agricultural and Food Chemistry, 2009, 57, 11557-11563.	2.4	56
63	Bioactivity studies and chemical profile of the antidiabetic plant Genista tenera. Journal of Ethnopharmacology, 2009, 122, 384-393.	2.0	51
64	Synthesis and Biological Evaluation of Sugars Containing α,βâ€Unsaturated Î³â€Łactones. European Journal of Organic Chemistry, 2008, 2008, 6134-6143.	1.2	13
65	Alkyl deoxy-arabino-hexopyranosides: Synthesis, surface properties, and biological activities. Bioorganic and Medicinal Chemistry, 2008, 16, 4083-4092.	1.4	20
66	Design and Optimization of Hot-Filling Pasteurization Conditions: Cupuaçu (Theobroma grandiflorum) Fruit Pulp Case Study. Biotechnology Progress, 2008, 19, 1261-1268.	1.3	6
67	A new lupene triterpenetriol and anticholinesterase activity of Salvia sclareoides. Fìtoterapìâ, 2007, 78, 474-481.	1.1	47
68	Synthesis, surface active and antimicrobial properties of new alkyl 2,6-dideoxy-l-arabino-hexopyranosides. Carbohydrate Research, 2005, 340, 191-201.	1.1	31
69	Sugar bislactones by one-step oxidative dimerisation with pyridinium chlorochromate versus regioselective oxidation of vicinal diols. Carbohydrate Research, 2004, 339, 1889-1897.	1.1	7
70	Target Selection in Designing Pasteurization Processes for Shelf-Stable High-Acid Fruit Products. Critical Reviews in Food Science and Nutrition, 2004, 44, 353-360.	5.4	110
71	Maintaining optimal atmosphere conditions for fruits and vegetables throughout the postharvest handling chain. Postharvest Biology and Technology, 2003, 27, 87-101.	2.9	88
72	Alicyclobacillus acidoterrestris spores as a target for Cupuaçu (Theobroma grandiflorum) nectar thermal processing: kinetic parameters and experimental methods. International Journal of Food Microbiology, 2002, 77, 71-81.	2.1	48

FILIPA V.M. SILVA

#	Article	IF	CITATIONS
73	Alicyclobacillus acidoterrestris spores in fruit products and design of pasteurization processes. Trends in Food Science and Technology, 2001, 12, 68-74.	7.8	123
74	Kinetics of flavour and aroma changes in thermally processed cupua�u (Theobroma grandiflorum) pulp. , 2000, 80, 783-787.		16
75	Note. Quality evaluation of cupuaçu (Theobroma grandiflorum) purée after pasteurization and during storage / Nota. Calidad del puré de cupuaçu (Theobroma grandiflorum) después de la pasterización y durante su almacenamiento. Food Science and Technology International, 2000, 6, 53-58.	1.1	4
76	TUBES FOR MODIFIED ATMOSPHERE PACKAGING OF FRESH FRUITS AND VEGETABLES: EFFECTIVE PERMEABILITY MEASUREMENT. Applied Engineering in Agriculture, 1999, 15, 313-318.	0.3	17
77	Colour changes in thermally processed cupuaçu (Theobroma grandiflorum) puree: critical times and kinetics modelling. International Journal of Food Science and Technology, 1999, 34, 87-94.	1.3	60
78	Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes. International Journal of Food Microbiology, 1999, 51, 95-103.	2.1	139
79	Modified atmosphere packaging for mixed loads of horticultural commodities exposed to two postharvest temperatures. Postharvest Biology and Technology, 1999, 17, 1-9.	2.9	29
80	Quality optimization of hot filled pasteurized fruit purees: Container characteristics and filling temperatures. Journal of Food Engineering, 1997, 32, 351-364.	2.7	18
81	High Pressure Processing of Fruit and Vegetable Products. , 0, , .		10
82	Optimisation of ultrasound assisted extraction of antiacetylcholinesterase and antioxidant compounds from manuka (Leptospermum scoparium) for use as a phytomedicine against Alzheimer's disease. New Zealand Journal of Forestry Science, 0, 50, .	0.8	4