Xue Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9431395/publications.pdf

Version: 2024-02-01

		236612	197535
87	2,713 citations	25	49
papers	citations	h-index	g-index
88	88	88	3876
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	2D covalent triazine framework: a new class of organic photocatalyst for water splitting. Journal of Materials Chemistry A, 2015, 3, 7750-7758.	5.2	229
2	Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Applied Physics Reviews, $2021,8,.$	5.5	202
3	MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horizons, 2018, 3, 335-341.	4.1	183
4	Screening and Design of Novel 2D Ferromagnetic Materials with High Curie Temperature above Room Temperature. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39032-39039.	4.0	167
5	Correlation between hardness and elastic moduli of the covalent crystals. Computational Materials Science, 2011, 50, 2287-2290.	1.4	163
6	A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III. Science Advances, 2016, 2, e1501010.	4.7	92
7	Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid. Green Chemistry, 2014, 16, 1093-1096.	4.6	75
8	Chemoselective dehydrogenative esterification of aldehydes and alcohols with a dimeric rhodium(<scp>ii</scp>) catalyst. Chemical Science, 2016, 7, 4428-4434.	3.7	75
9	A new class of epitaxial porphyrin metal–organic framework thin films with extremely high photocarrier generation efficiency: promising materials for all-solid-state solar cells. Journal of Materials Chemistry A, 2016, 4, 12739-12747.	5.2	75
10	Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate. Cell Research, 2019, 29, 486-501.	5.7	72
11	2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications. Applied Physics Letters, 2018, 112, .	1.5	66
12	Synthesis of a novel water-soluble chitosan derivative for flocculated decolorization. Journal of Hazardous Materials, 2011, 185, 1482-1488.	6.5	64
13	Tunable Assembly of sp ³ Crossâ€Linked 3D Graphene Monoliths: A Firstâ€Principles Prediction. Advanced Functional Materials, 2013, 23, 5846-5853.	7.8	59
14	Structure and stability of bilayer borophene: The roles of hexagonal holes and interlayer bonding. FlatChem, 2018, 7, 48-54.	2.8	58
15	Efficient Rutin and Quercetin Biosynthesis through Flavonoids-Related Gene Expression in Fagopyrum tataricum Gaertn. Hairy Root Cultures with UV-B Irradiation. Frontiers in Plant Science, 2016, 7, 63.	1.7	57
16	Divergent Dehydrogenative Coupling of Indolines with Alcohols. ACS Catalysis, 2017, 7, 1831-1835.	5.5	52
17	Mechanical and electronic properties of B ₁₂ -based ternary crystals of orthorhombic phase. Journal of Physics Condensed Matter, 2010, 22, 315503.	0.7	51
18	A new 2D monolayer BiXene, M ₂ C (M = Mo, Tc, Os). Nanoscale, 2016, 8, 15753-15762.	2.8	46

#	Article	IF	Citations
19	New amphoteric flocculant containing beta-cyclodextrin, synthesis, charaterization and decolorization properties. Journal of Hazardous Materials, 2010, 173, 298-304.	6.5	44
20	Cationic surface modification of nanocrystalline cellulose as reinforcements for preparation of the chitosan-based nanocomposite films. Cellulose, 2017, 24, 163-174.	2.4	43
21	Point defects in group III nitrides: A comparative first-principles study. Journal of Applied Physics, 2019, 125, .	1.1	41
22	Preparing water-soluble 2, 3-dialdehyde cellulose as a bio-origin cross-linker of chitosan. Cellulose, 2018, 25, 987-998.	2.4	38
23	Giant magnetic anisotropy of a 5d transition metal decorated two-dimensional polyphthalocyanine framework. Journal of Materials Chemistry C, 2016, 4, 2147-2154.	2.7	35
24	Optimizing the thermoelectric transport properties of BiCuSeO via doping with the rare-earth variable-valence element Yb. Journal of Materials Chemistry C, 2018, 6, 8479-8487.	2.7	26
25	Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy. Biomaterials Science, 2019, 7, 4558-4567.	2.6	25
26	Enhanced Thermoelectric Performance of Zr _{1–<i>x</i>} Ta _{<i>x</i>} NiSn Half-Heusler Alloys by Diagonal-Rule Doping. ACS Applied Materials & Doping. ACS ACS Applied Materials & Doping. ACS Applied Materi	4.0	25
27	Enhanced Ferromagnetism of Crl ₃ Bilayer by Self-Intercalation*. Chinese Physics Letters, 2020, 37, 107506.	1.3	25
28	Two-Dimensional AXenes: A New Family of Room-Temperature d ⁰ Ferromagnets and Their Structural Phase Transitions. Journal of Physical Chemistry Letters, 2019, 10, 7753-7759.	2.1	23
29	Chemically Engineering Magnetic Anisotropy of 2D Metalloporphyrin. Advanced Science, 2017, 4, 1700019.	5.6	22
30	Mechanical and electronic properties of diamond nanowires under tensile strain from first principles. Nanotechnology, 2011, 22, 405705.	1.3	21
31	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">N<mml:msub><mml:mi mathvariant="normal">H<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:mo>·</mml:mo><mml:mn>2</mml:mn>="normal">H<mml:mn>2</mml:mn><mml:mi< td=""><td>mml:mn></td><td><mml:msub></mml:msub></td></mml:mi<></mml:mi </mml:mrow>	mml:mn>	<mml:msub></mml:msub>
32	mathyariant='normal' > O c/mml mi> c/mml mrows c/mml math> under high pressure. Physical Review B, 2D tetragonal transition-metal phosphides: an ideal platform to screen metal shrouded crystals for multifunctional applications. Nanoscale, 2020, 12, 6776-6784.	2.8	21
33	Layer-dependent magnetic phase diagram in FenGeTe2 (3 â‰쪄 â‰枒) ultrathin films. Communications Physics, 2022, 5, .	2.0	21
34	Cationic cellulose nanocrystals (CCNCs) and chitosan nanocomposite films filled with CCNCs for removal of reactive dyes from aqueous solutions. Cellulose, 2018, 25, 3927-3939.	2.4	19
35	Synthesis and characterization of organoâ€soluble polyimides derived from a new spirobifluorene diamine. Polymer International, 2010, 59, 896-900.	1.6	17
36	When a Semiconductor Utilized as an NIR Laser-Responsive Photodynamic/Photothermal Theranostic Agent Integrates with Upconversion Nanoparticles. ACS Biomaterials Science and Engineering, 2019, 5, 3100-3110.	2.6	17

#	Article	IF	Citations
37	Robust spin manipulation in 2D organometallic Kagome lattices: a first-principles study. Physical Chemistry Chemical Physics, 2020, 22, 11045-11052.	1.3	17
38	Synthesis and properties of the vinyl silicone oil modified polyacrylate core-shell latex as a binder for pigment printing. Journal of Adhesion Science and Technology, 2013, 27, 154-164.	1.4	16
39	A novel capillary microplasma analytical system: interface-free coupling of glow discharge optical emission spectrometry to capillary electrophoresis. Journal of Analytical Atomic Spectrometry, 2016, 31, 1423-1429.	1.6	16
40	Phase diagrams for clathrate hydrates of methane, ethane, and propane from first-principles thermodynamics. Physical Chemistry Chemical Physics, 2016, 18, 3272-3279.	1.3	15
41	Improved Red Emission and Short-Wavelength Infrared Luminescence under 808 nm Laser for Tumor Theranostics. ACS Biomaterials Science and Engineering, 2019, 5, 4683-4691.	2.6	15
42	Quantitative evaluation of mining geo-environmental quality in Northeast China: comprehensive index method and support vector machine models. Environmental Earth Sciences, 2015, 73, 7945-7955.	1.3	14
43	Optimization of Red Luminescent Intensity in Eu ³⁺ -Doped Lanthanide Phosphors Using Genetic Algorithm. ACS Biomaterials Science and Engineering, 2018, 4, 4378-4384.	2.6	13
44	Enhanced thermoelectric performance of variable-valence element Sm-doped BiCuSeO oxyselenides. Materials Research Bulletin, 2020, 126, 110841.	2.7	13
45	Hydrophilic Finishing of PET Fabrics by Applying Chitosan and the Periodate Oxidized \hat{l}^2 -cyclodextrin for Wash Resistance Improvement. Fibers and Polymers, 2020, 21, 73-81.	1.1	13
46	Effects of spin–phonon coupling on two-dimensional ferromagnetic semiconductors: a case study of iron and ruthenium trihalides. Nanoscale, 2021, 13, 7714-7722.	2.8	13
47	Enhancement in thermoelectric properties of ZrNiSn-based alloys by Ta doping and Hf substitution. Acta Materialia, 2022, 233, 117976.	3.8	13
48	Properties of the Nanoscale Hydrophilic Cationic Pigment Based on Quaternary Surfactant. Journal of Dispersion Science and Technology, 2008, 29, 52-57.	1.3	12
49	Formation of honeycombâ€patterned microporous films based on a fluorinated poly(siloxane imide) segmented copolymer. Journal of Applied Polymer Science, 2011, 119, 3329-3337.	1.3	12
50	Phase diagram of water–methane by first-principles thermodynamics: discovery of MH-IV and MH-V hydrates. Physical Chemistry Chemical Physics, 2017, 19, 15996-16002.	1.3	12
51	Collaborative ISL1/GATA3 interaction in controlling neuroblastoma oncogenic pathways overlapping with but distinct from MYCN. Theranostics, 2019, 9, 986-1000.	4.6	12
52	Ferromagnetic Dirac half-metallicity in transition metal embedded honeycomb borophene. Physical Chemistry Chemical Physics, 2021, 23, 17150-17157.	1.3	12
53	Processing bulk insulating CaTiO3 into a high-performance thermoelectric material. Chemical Engineering Journal, 2022, 428, 131121.	6.6	12
54	Synthesis of the Hydroxyl-Containing Poly(dimethyl siloxane) Modified Polyacrylate Core-Shell Latex and the Application as a Novel Binder for Pigment Printing of Fabric. Journal of Dispersion Science and Technology, 2011, 32, 1266-1272.	1.3	11

#	Article	IF	CITATIONS
55	Evolution of boron clusters in iron tetraborides under high pressure: semiconducting and ferromagnetic superhard materials. RSC Advances, 2015, 5, 48012-48023.	1.7	11
56	Lanthanide-Based Nanocomposites for Photothermal Therapy under Near-Infrared Laser: Relationship between Light and Heat, Biostability, and Reaction Temperature. Langmuir, 2020, 36, 4033-4043.	1.6	11
57	Optimized Multimetal Sensitized Phosphor for Enhanced Red Up-Conversion Luminescence by Machine Learning. ACS Combinatorial Science, 2020, 22, 285-296.	3.8	11
58	Significantly improved thermoelectric properties of Nb-doped ZrNiSn half-Heusler compounds. Chemical Engineering Journal, 2022, 449, 137898.	6.6	11
59	Rational design of 2D organic magnets with giant magnetic anisotropy based on two-coordinate 5d transition metals. APL Materials, 2020, 8, .	2.2	10
60	Mesoporous semiconductors combined with up-conversion nanoparticles for enhanced photodynamic therapy under near infrared light. RSC Advances, 2019, 9, 17273-17280.	1.7	9
61	New refractory MAB phases and their 2D derivatives: insight into the effects of valence electron concentration and chemical composition. RSC Advances, 2020, 10, 25836-25847.	1.7	9
62	Prediction of superconductivity in bilayer borophenes. RSC Advances, 2021, 11, 40220-40227.	1.7	9
63	Transition-Metal Interlink Neural Network: Machine Learning of 2D Metal–Organic Frameworks with High Magnetic Anisotropy. ACS Applied Materials & Interfaces, 2022, 14, 33726-33733.	4.0	9
64	Ab initio analytic calculation of point defects in AlGaN/GaN heterointerfaces. Journal of Physics Condensed Matter, 2021, 33, 035002.	0.7	8
65	FeSi ₂ : a two-dimensional ferromagnet containing planar hexacoordinate Fe atoms. Nanoscale Advances, 2022, 4, 600-607.	2.2	8
66	Ground state structures, electronic and optical properties of medium-sized Nan + (n = 9, 15, 21, 26, 31,) Tj ETQq	0 0 0 rgB1	「/9verlock 10
67	Compositionâ€Dependent Magnetic Ordering in Freestanding 2D Nonâ€van der Waals Cr ₂ Te <i>>sub>x</i> Functional Materials, 2022, 32, .	7.8	7
68	Flocculated decolorization of vinylsulfone reactive dye solutions with a β yclodextrinâ€based copolymer. Journal of Applied Polymer Science, 2010, 118, 480-485.	1.3	6
69	Tuning the electronic and optical properties of hydrogen-terminated Si nanocluster by uniaxial compression. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	6
70	Intrinsic Multiferroic in VNI Monolayer. ACS Applied Electronic Materials, 2022, 4, 3177-3182.	2.0	6
71	Phase Diagram of Methane Hydrates and Discovery of MH-VI Hydrate. Journal of Physical Chemistry A, 2018, 122, 6007-6013.	1.1	5
72	Comparison study of different indoleamine-2,3 dioxygenase inhibitors from the perspective of pharmacodynamic effects. International Journal of Immunopathology and Pharmacology, 2020, 34, 205873842095058.	1.0	5

#	Article	IF	CITATIONS
73	Modification of Wool via Grafting \hat{l}^2 -cyclodextrin Oxidized by Sodium Periodate. Fibers and Polymers, 2020, 21, 1669-1677.	1.1	5
74	Robust Dirac spin gapless semiconductors in a two-dimensional oxalate based organic honeycomb-kagome lattice. Nanoscale, 2022, 14, 2023-2029.	2.8	5
75	Alloying two-dimensional NbSi ₂ N ₄ : a new strategy to realize half-metallic antiferromagnets. Nanoscale, 2022, 14, 8078-8084.	2.8	5
76	Analysis and optimization of alloyed Al-p ⁺ region and rear contacts for highly efficient industrial n-type silicon solar cells. RSC Advances, 2019, 9, 6681-6688.	1.7	4
77	Compressive behavior and electronic properties of ammonia ice: a first-principles study. RSC Advances, 2020, 10, 26579-26587.	1.7	4
78	Propene/1-octene copolymers as a new pervaporative membrane material for wastewater treatment. Journal of Materials Science, 2008, 43, 1630-1637.	1.7	3
79	Self-assembly 2D zinc-phthalocyanine heterojunction: An ideal platform for high efficiency solar cell. Applied Physics Letters, 2017, 111, 253904.	1.5	3
80	Two dimensional self-assembly zinc porphyrin and zinc phthalocyanine heterojunctions with record high power conversion efficiencies. Journal of Physics Condensed Matter, 2018, 30, 25LT02.	0.7	3
81	Spin transport in different oxide phases of copper. Physical Review B, 2021, 103, .	1.1	3
82	Bimetal single-molecule magnets supported on benzene with large magnetic anisotropy and unquenched orbital moment. Physical Review Research, 2021, 3, .	1.3	3
83	Modification of $\hat{l}^2\hat{a}$ \in cyclodextrin for rapidly decolorizing the dye \hat{a} \in containing wastewaters by flocculation. Journal of Applied Polymer Science, 2014, 131, .	1.3	2
84	Hydrothermal synthesis of spindle-like $f(x) = 1000$ Hydrothermal synthesis of spindle-like $f(x) = 10000$ Hydrothermal synthesis of spindle-like $f(x) = 1000$ Hydrothermal synthesis of spindle-like $f(x) = 1000$ Hydrothermal synthesis of spindle-like $f(x) = 1000$ Hydrothermal synthesis of spin	0.8	2
85	A valence balancing rule for the design of bimetallic phosphides targeting high thermoelectric performance. Physical Chemistry Chemical Physics, 2021, 23, 18916-18924.	1.3	2
86	The quantum confinement effects on the electronic properties of monolayer GeS nanoribbon with tube-edged reconstruction. Nanotechnology, 2022, 33, 345202.	1.3	2
87	Effects of vacancy defects on the magnetic properties of vanadium diselenide monolayers: a first principle investigation. Physical Chemistry Chemical Physics, 2022, 24, 17615-17622.	1.3	2