Jaroslav Roh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9430779/publications.pdf

Version: 2024-02-01

49 1,365 2
papers citations h-ir

331538 345118 36
h-index g-index

55 55 all docs citations

55 times ranked 1829 citing authors

#	Article	IF	CITATIONS
1	Examination of diverse iron-chelating agents for the protection of differentiated PC12 cells against oxidative injury induced by 6-hydroxydopamine and dopamine. Scientific Reports, 2022, 12, .	1.6	2
2	Development of water-soluble prodrugs of the bisdioxopiperazine topoisomerase $ll\hat{l}^2$ inhibitor ICRF-193 as potential cardioprotective agents against anthracycline cardiotoxicity. Scientific Reports, 2021, 11, 4456.	1.6	6
3	Structure–Activity Relationship Study of Dexrazoxane Analogues Reveals ICRF-193 as the Most Potent Bisdioxopiperazine against Anthracycline Toxicity to Cardiomyocytes Due to Its Strong Topoisomerase IIβ Interactions. Journal of Medicinal Chemistry, 2021, 64, 3997-4019.	2.9	14
4	Prodrug of ICRF-193 provides promising protective effects against chronic anthracycline cardiotoxicity in a rabbit model <i>in vivo</i> . Clinical Science, 2021, 135, 1897-1914.	1.8	8
5	Clinically Translatable Prevention of Anthracycline Cardiotoxicity by Dexrazoxane Is Mediated by Topoisomerase II Beta and Not Metal Chelation. Circulation: Heart Failure, 2021, 14, e008209.	1.6	24
6	Design and Synthesis of Pyrano [3,2-b] indolones Showing Antimycobacterial Activity. ACS Infectious Diseases, 2021, 7, 88-100.	1.8	7
7	Investigation of Structure-Activity Relationships of Dexrazoxane Analogs Reveals Topoisomerase $II < i > \hat{I}^2 < i > Interaction$ as a Prerequisite for Effective Protection against Anthracycline Cardiotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 402-415.	1.3	14
8	Development of 3,5-Dinitrophenyl-Containing 1,2,4-Triazoles and Their Trifluoromethyl Analogues as Highly Efficient Antitubercular Agents Inhibiting Decaprenylphosphoryl-β- <scp>d</scp> -ribofuranose 2′-Oxidase. Journal of Medicinal Chemistry, 2019, 62, 8115-8139.	2.9	37
9	Esters of terpene alcohols as highly potent, reversible, and low toxic skin penetration enhancers. Scientific Reports, 2019, 9, 14617.	1.6	45
10	UHPLC-MS/MS method for analysis of sobuzoxane, its active form ICRF-154 and metabolite EDTA-diamide and its application to bioactivation study. Scientific Reports, 2019, 9, 4524.	1.6	2
11	Novel SPME fibers based on a plastic support for determination of plasma protein binding of thiosemicarbazone metal chelators: a case example of DpC, an anti-cancer drug that entered clinical trials. Analytical and Bioanalytical Chemistry, 2019, 411, 2383-2394.	1.9	5
12	79â€Effective cardioprotection against anthracycline cardiotoxicity in isolated cardiomyocytes and rabbits is based on dexrazoxane interaction with topoisomerase II beta instead of iron chelation by its metabolite ADR-925., 2019, , .		0
13	Pharmacokinetics of the Cardioprotective Drug Dexrazoxane and Its Active Metabolite ADR-925 with Focus on Cardiomyocytes and the Heart. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 433-446.	1.3	15
14	2,6-Dihydroxybenzaldehyde Analogues of the Iron Chelator Salicylaldehyde Isonicotinoyl Hydrazone: Increased Hydrolytic Stability and Cytoprotective Activity against Oxidative Stress. Chemical Research in Toxicology, 2018, 31, 1151-1163.	1.7	7
15	Structure-activity relationship studies on 3,5-dinitrophenyl tetrazoles as antitubercular agents. European Journal of Medicinal Chemistry, 2017, 130, 419-432.	2.6	31
16	Investigation of novel dexrazoxane analogue JR-311 shows significant cardioprotective effects through topoisomerase Ilbeta but not its iron chelating metabolite. Toxicology, 2017, 392, 1-10.	2.0	25
17	Non-catalyzed addition of heterocyclic thiols and 5-substituted-1H-tetrazoles to vinyl ethers. Tetrahedron Letters, 2017, 58, 3842-3845.	0.7	5
18	Development of water-soluble 3,5-dinitrophenyl tetrazole and oxadiazole antitubercular agents. Bioorganic and Medicinal Chemistry, 2017, 25, 5468-5476.	1.4	38

#	Article	IF	CITATIONS
19	S-substituted 3,5-dinitrophenyl 1,3,4-oxadiazole-2-thiols and tetrazole-5-thiols as highly efficient antitubercular agents. European Journal of Medicinal Chemistry, 2017, 126, 369-383.	2.6	50
20	Development of 2-Methoxyhuprine as Novel Lead for Alzheimer's Disease Therapy. Molecules, 2017, 22, 1265.	1.7	26
21	Metalâ€Cation Recognition in Water by a Tetrapyrazinoporphyrazineâ€Based Tweezer Receptor. Chemistry - A European Journal, 2016, 22, 2417-2426.	1.7	22
22	Characterization of cytoprotective and toxic properties of iron chelator SIH, prochelator BSIH and their degradation products. Toxicology, 2016, 350-352, 15-24.	2.0	10
23	Large-Scale Synthesis of Piperazine-2,6-dione and Its Use in the Synthesis of Dexrazoxane Analogues. Synthesis, 2016, 48, 4580-4588.	1.2	3
24	Synthesis of 6-hydroxyceramide using ruthenium-catalyzed hydrosilylation–protodesilylation. Unexpected formation of a long periodicity lamellar phase in skin lipid membranes. RSC Advances, 2016, 6, 73343-73350.	1.7	19
25	Development of 3,5-Dinitrobenzylsulfanyl-1,3,4-oxadiazoles and Thiadiazoles as Selective Antitubercular Agents Active Against Replicating and Nonreplicating <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2016, 59, 2362-2380.	2.9	85
26	A UHPLC-UV-QTOF study on the stability of carfilzomib, a novel proteasome inhibitor. Journal of Pharmaceutical and Biomedical Analysis, 2016, 124, 365-373.	1.4	10
27	The role of the size of aza-crown recognition moiety in azaphthalocyanine fluorescence sensors for alkali and alkaline earth metal cations. Dyes and Pigments, 2015, 121, 178-187.	2.0	31
28	Synthesis and analysis of novel analogues of dexrazoxane and its open-ring hydrolysis product for protection against anthracycline cardiotoxicity in vitro and in vivo. Toxicology Research, 2015, 4, 1098-1114.	0.9	20
29	Scalable Synthesis of Human Ultralong Chain Ceramides. Organic Letters, 2015, 17, 5456-5459.	2.4	26
30	Tetrazole regioisomers in the development of nitro group-containing antitubercular agents. MedChemComm, 2015, 6, 174-181.	3.5	40
31	In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites. PLoS ONE, 2015, 10, e0139929.	1.1	7
32	Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents. Oncotarget, 2015, 6, 42411-42428.	0.8	34
33	ANTHRACYCLINE CARDIOTOXICITY: THE PHARMACOKINETICS AND PHARMACODYNAMICS OF DEXRAZOXANE AND ITS OPEN RING METABOLITE. Heart, 2014, 100, A7.1-A7.	1.2	0
34	Transdermal Delivery and Cutaneous Targeting of Antivirals using a Penetration Enhancer and Lysolipid Prodrugs. Pharmaceutical Research, 2014, 31, 1071-1081.	1.7	19
35	The Role of the Trans Double Bond in Skin Barrier Sphingolipids: Permeability and Infrared Spectroscopic Study of Model Ceramide and Dihydroceramide Membranes. Langmuir, 2014, 30, 5527-5535.	1.6	24
36	Different Phase Behavior and Packing of Ceramides with Long (C16) and Very Long (C24) Acyls in Model Membranes: Infrared Spectroscopy Using Deuterated Lipids. Journal of Physical Chemistry B, 2014, 118, 10460-10470.	1.2	65

#	Article	IF	CITATIONS
37	The Chemistry and Biology of 6â€Hydroxyceramide, the Youngest Member of the Human Sphingolipid Family. ChemBioChem, 2014, 15, 1555-1562.	1.3	21
38	Simultaneous determination of the novel thiosemicarbazone antiâ€cancer agent, Bp4eT, and its main phase I metabolites in plasma: Application to a pilot pharmacokinetic study in rats. Biomedical Chromatography, 2014, 28, 621-629.	0.8	7
39	1-Substituted-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazoles and their isosteric analogs: A new class of selective antitubercular agents active against drug-susceptible and multidrug-resistant mycobacteria. European Journal of Medicinal Chemistry, 2014, 82, 324-340.	2.6	44
40	One-pot synthesis of 1-substituted-5-alkylselanyl-1 H -tetrazoles from isoselenocyanates: unexpected formation of N -alkyl- N -arylcyanamides and (Z)- Se -alkyl- N -cyano- N , $\mathrm{N}\hat{a} \in \mathbb{Z}^2$ -diarylisoselenoureas. Tetrahedron, 2013, 69, 8798-8808.	1.0	22
41	Amino acid derivatives as transdermal permeation enhancers. Journal of Controlled Release, 2013, 165, 91-100.	4.8	37
42	Ceramides in the Skin Lipid Membranes: Length Matters. Langmuir, 2013, 29, 15624-15633.	1.6	101
43	An Efficient Synthesis of 1-Substituted 5-Bromo-1H-tetrazoles. Synthesis, 2013, 45, 2029-2033.	1.2	6
44	Synthesis and Functionalization of 5â€Substituted Tetrazoles. European Journal of Organic Chemistry, 2012, 2012, 6101-6118.	1.2	236
45	Azaphthalocyanines with fused triazolo rings: formation of sterically stressed constitutional isomers. Chemical Communications, 2012, 48, 4326.	2.2	19
46	Enhanced Topical and Transdermal Delivery of Antineoplastic and Antiviral Acyclic Nucleoside Phosphonate cPr-PMEDAP. Pharmaceutical Research, 2011, 28, 3105-3115.	1.7	10
47	One-pot regioselective vinylation of tetrazoles: preparation of 5-substituted 2-vinyl-2H-tetrazoles. Tetrahedron Letters, 2010, 51, 1411-1414.	0.7	10
48	Practical Synthesis of 5-Substituted Tetrazoles under Microwave Irradiation. Synthesis, 2009, 2009, 2175-2178.	1.2	45
49	Tetrazoles: LI. Synthesis of 5-substituted tetrazoles under microwave activation. Russian Journal of Organic Chemistry, 2007, 43, 765-767.	0.3	31