Peter T C So

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9430698/publications.pdf

Version: 2024-02-01

218677 155660 3,328 67 26 55 h-index citations g-index papers 70 70 70 4837 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Label-free discrimination of tumorigenesis stages using in vitro prostate cancer bone metastasis model by Raman imaging. Scientific Reports, 2022, 12, 8050.	3.3	6
2	Dual modal spectroscopic tissue scanner for colorectal cancer diagnosis. Surgical Endoscopy and Other Interventional Techniques, 2021, 35, 4363-4370.	2.4	1
3	Multiphoton imaging of the effect of monosaccharide diffusion and formation of fluorescent advanced end products in porcine aorta. Journal of Biophotonics, 2021, 14, e202000439.	2.3	0
4	Tumor cell nuclei soften during transendothelial migration. Journal of Biomechanics, 2021, 121, 110400.	2.1	42
5	De-scattering with Excitation Patterning enables rapid wide-field imaging through scattering media. Science Advances, 2021, 7, .	10.3	11
6	Structures and topological defects in pressure-driven lyotropic chromonic liquid crystals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
7	Direct Observation of Glucose Raman Fingerprint from in vivo Skin., 2021,,.		0
8	In vivo visualization of butterfly scale cell morphogenesis in $\langle i \rangle$ Vanessa cardui $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
9	Single-Shot Quantitative Polarization Imaging of Complex Birefringent Structure Dynamics. ACS Photonics, 2021, 8, 3440-3447.	6.6	12
10	Luminescent surfaces with tailored angular emission for compact dark-field imaging devices. Nature Photonics, 2020, 14, 310-315.	31.4	33
11	Direct observation of glucose fingerprint using in vivo Raman spectroscopy. Science Advances, 2020, 6, eaay5206.	10.3	106
12	High spatial and temporal resolution synthetic aperture phase microscopy. Advanced Photonics, 2020, 2, .	11.8	35
13	Quantitative third-harmonic generation imaging of mouse visual cortex areas reveals correlations between functional maps and structural substrates. Biomedical Optics Express, 2020, 11, 5650.	2.9	9
14	Spectrochemical Probing of MicroRNA Duplex Using Spontaneous Raman Spectroscopy for Biosensing Applications. Analytical Chemistry, 2020, 92, 14423-14431.	6.5	1
15	Studying nucleicÂenvelope and plasma membrane mechanics of eukaryotic cells using confocal reflectance interferometric microscopy. Nature Communications, 2019, 10, 3652.	12.8	20
16	Chip-Based Resonance Raman Spectroscopy Using Tantalum Pentoxide Waveguides. IEEE Photonics Technology Letters, 2019, 31, 1127-1130.	2.5	12
17	Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications. Journal Physics D: Applied Physics, 2019, 52, 264001.	2.8	10
18	Lowâ€coherent optical diffraction tomography by angleâ€scanning illumination. Journal of Biophotonics, 2019, 12, e201800289.	2.3	12

#	Article	IF	Citations
19	Functional imaging of visual cortical layers and subplate in awake mice with optimized three-photon microscopy. Nature Communications, 2019, 10, 177.	12.8	121
20	Scanless volumetric imaging by selective access multifocal multiphoton microscopy. Optica, 2019, 6, 76.	9.3	15
21	Single-shot dual-wavelength interferometric microscopy. Methods, 2018, 136, 35-39.	3.8	8
22	Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9080-9085.	7.1	89
23	Evaluation of accuracy dependence of Raman spectroscopic models on the ratio of calibration and validation points for non-invasive glucose sensing. Analytical and Bioanalytical Chemistry, 2018, 410, 6469-6475.	3.7	25
24	Automated fluorescence intensity and gradient analysis enables detection of rare fluorescent mutant cells deep within the tissue of RaDR mice. Scientific Reports, 2018, 8, 12108.	3.3	7
25	Singleâ€Shot Optical Anisotropy Imaging with Quantitative Polarization Interference Microscopy. Laser and Photonics Reviews, 2018, 12, 1800070.	8.7	12
26	Scattering reduction by structured light illumination in line-scanning temporal focusing microscopy. Biomedical Optics Express, 2018, 9, 5654.	2.9	16
27	Reflection phase microscopy using spatio-temporal coherence of light. Optica, 2018, 5, 1468.	9.3	22
28	Quantification of labile heme in live malaria parasites using a genetically encoded biosensor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2068-E2076.	7.1	56
29	Large population cell characterization using quantitative phase cytometer. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 450-459.	1.5	18
30	Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair and Regeneration, 2017, 25, 177-191.	3.0	70
31	Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with Raman spectroscopy and quantitative phase microscopy. Scientific Reports, 2017, 7, 10829.	3.3	15
32	Modeling the depth-sectioning effect in reflection-mode dynamic speckle-field interferometric microscopy. Optics Express, 2017, 25, 130.	3.4	14
33	Tomographic phase microscopy: principles and applications in bioimaging [Invited]. Journal of the Optical Society of America B: Optical Physics, 2017, 34, B64.	2.1	161
34	Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device. Micromachines, 2017, 8, 85.	2.9	15
35	Investigating Effects of Proteasome Inhibitor on Multiple Myeloma Cells Using Confocal Raman Microscopy. Sensors, 2016, 16, 2133.	3.8	19
36	Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. Small, 2016, 12, 612-622.	10.0	83

#	Article	IF	CITATIONS
37	Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging. Scientific Reports, 2016, 6, 27142.	3.3	21
38	Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9527-9532.	7.1	36
39	Virtual <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>k</mml:mi></mml:math> -Space Modulation Optical Microscopy. Physical Review Letters, 2016, 117, 028102.	7.8	32
40	Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units. Science Advances, 2016, 2, e1501429.	10.3	192
41	Microfluidics: Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform (Small 5/2016). Small, 2016, 12, 688-688.	10.0	3
42	Inhibitory Synapses Are Repeatedly Assembled and Removed at Persistent Sites InÂVivo. Neuron, 2016, 89, 756-769.	8.1	162
43	In Situ Quantification of Surface Chemistry in Porous Collagen Biomaterials. Annals of Biomedical Engineering, 2016, 44, 803-815.	2.5	23
44	Objective, comparative assessment of the penetration depth of temporal-focusing microscopy for imaging various organs. Journal of Biomedical Optics, 2015, 20, 061107.	2.6	9
45	3D-resolved targeting of photodynamic therapy using temporal focusing. Laser Physics Letters, 2014, 11, 115605.	1.4	8
46	Application of multiphoton microscopy in dermatological studies: A mini-review. Journal of Innovative Optical Health Sciences, 2014, 07, 1330010.	1.0	61
47	Rosa26-GFP Direct Repeat (RaDR-GFP) Mice Reveal Tissue- and Age-Dependence of Homologous Recombination in Mammals In Vivo. PLoS Genetics, 2014, 10, e1004299.	3.5	44
48	In vivolabel-free quantification of liver microcirculation using dual-modality microscopy. Journal of Biomedical Optics, 2014, 19, 116006.	2.6	5
49	Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry. Biomedical Optics Express, 2014, 5, 3494.	2.9	8
50	Quantifying intracellular protein binding thermodynamics during mechanotransduction based on FRET spectroscopy. Methods, 2014, 66, 208-221.	3.8	3
51	Dynamic speckle illumination wide-field reflection phase microscopy. Optics Letters, 2014, 39, 6062.	3.3	41
52	Reassignment of Scattered Emission Photons in Multifocal Multiphoton Microscopy. Scientific Reports, 2014, 4, 5153.	3.3	12
53	Experimenting Liver Fibrosis Diagnostic by Two Photon Excitation Microscopy and Bag-of-Features Image Classification. Scientific Reports, 2014, 4, 4636.	3.3	55
54	Improving femtosecond laser pulse delivery through a hollow core photonic crystal fiber for temporally focused two-photon endomicroscopy. Scientific Reports, 2014, 4, 6626.	3.3	15

#	Article	IF	Citations
55	High-Throughput Nonlinear Optical Microscopy. Biophysical Journal, 2013, 105, 2641-2654.	0.5	45
56	Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination. Biomedical Optics Express, 2013, 4, 995.	2.9	86
57	Measurement of the Time-Resolved Reflection Matrix for Enhancing Light Energy Delivery into a Scattering Medium. Physical Review Letters, 2013, 111, 243901.	7.8	66
58	High Resolution Wide Field Stimulated Raman Scattering Microscopy. , 2010, , .		0
59	Label-free diagnosis of human hepatocellular carcinoma by multiphoton autofluorescence microscopy. Applied Physics Letters, 2009, 95, .	3.3	9
60	Second harmonic generation χ tensor microscopy for tissue imaging. Applied Physics Letters, 2009, 94, 183902.	3.3	50
61	Multifocal multiphoton microscopy based on multianode photomultiplier tubes. Optics Express, 2007, 15, 11658.	3.4	114
62	Non-Invasive Diagnosis of Skin Structure and Biochemistry Based on Non-Linear Optical Microscopy & Spectroscopy. Microscopy and Microanalysis, 2002, 8, 280-281.	0.4	0
63	Two-photon 3-d mapping of tissue endogenous fluorescence Species based on fluorescence excitation and emission Spectra. Microscopy and Microanalysis, 2002, 8, 1064-1065.	0.4	1
64	Two-Photon Excitation Fluorescence Microscopy. Annual Review of Biomedical Engineering, 2000, 2, 399-429.	12.3	962
65	Effects of substance P on human colonic mucosa in vitro. American Journal of Physiology - Renal Physiology, 1999, 276, G1473-G1483.	3.4	49
66	Multiphoton Excitation Microscopy of <i>In Vivo</i> Human Skin: Functional and Morphological Optical Biopsy Based on Threeâ€Dimensional Imaging, Lifetime Measurements and Fluorescence Spectroscopy ^a . Annals of the New York Academy of Sciences, 1998, 838, 58-67.	3.8	120
67	Probing Deep-Tissue Structures by Two-Photon Fluorescence Microscopy. , 0, , 221-237.		2