Patricia Pranke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9430689/publications.pdf

Version: 2024-02-01

75 papers

1,847 citations

236612 25 h-index 288905 40 g-index

78 all docs 78 docs citations

times ranked

78

2920 citing authors

#	Article	IF	CITATIONS
1	Electrospinning for regenerative medicine: a review of the main topics. Drug Discovery Today, 2014, 19, 743-753.	3.2	223
2	Vascular Tissue Engineering: Polymers and Methodologies for Small Caliber Vascular Grafts. Frontiers in Cardiovascular Medicine, 2020, 7, 592361.	1.1	91
3	Advantages and challenges offered by biofunctional core–shell fiber systems for tissue engineering and drug delivery. Drug Discovery Today, 2016, 21, 1243-1256.	3.2	81
4	Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresource Technology, 2010, 101, 2872-2876.	4.8	80
5	Hematologic and Immunophenotypic Characterization of Human Umbilical Cord Blood. Acta Haematologica, 2001, 105, 71-76.	0.7	67
6	Biological Applications of Nanobiotechnology. Journal of Nanoscience and Nanotechnology, 2014, 14, 1007-1017.	0.9	66
7	Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Research, 2017, 1663, 95-105.	1.1	61
8	The Isolation of Stem Cells from Human Deciduous Teeth Pulp Is Related to the Physiological Process of Resorption. Journal of Endodontics, 2011, 37, 973-979.	1.4	60
9	A New Biomaterial of Nanofibers with the Microalga <l>Spirulinaas</l> Scaffolds to Cultivate with Stem Cells for Use in Tissue Engineering. Journal of Biomedical Nanotechnology, 2013, 9, 710-718.	0.5	50
10	Carious deciduous teeth are a potential source for dental pulp stem cells. Clinical Oral Investigations, 2016, 20, 75-81.	1.4	48
11	Calculating hansen solubility parameters of polymers with genetic algorithms. Journal of Applied Polymer Science, 2014, 131, .	1.3	47
12	Development of a new nanofiber scaffold for use with stem cells in a third degree burn animal model. Burns, 2014, 40, 1650-1660.	1.1	44
13	Stem Cells from Human Exfoliated Deciduous Teeth Modulate Early Astrocyte Response after Spinal Cord Contusion. Molecular Neurobiology, 2019, 56, 748-760.	1.9	44
14	<scp>I</scp> nfluence of random and oriented electrospun fibrous poly(lacticâ€ <i>co</i> â€glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells. Journal of Biomedical Materials Research - Part A, 2017, 105, 1333-1345.	2.1	43
15	Mesenchymal stem cells cultivated on scaffolds formed by 3D printed PCL matrices, coated with PLGA electrospun nanofibers for use in tissue engineering. Biomedical Physics and Engineering Express, 2017, 3, 045005.	0.6	42
16	The effects of hypoxia on in vitro culture of dental-derived stem cells. Archives of Oral Biology, 2016, 68, 13-20.	0.8	39
17	Update on the main use of biomaterials and techniques associated with tissue engineering. Drug Discovery Today, 2018, 23, 1474-1488.	3.2	39
18	Effects of cryopreservation on the characteristics of dental pulp stem cells of intact deciduous teeth. Archives of Oral Biology, 2014, 59, 970-976.	0.8	37

#	Article	IF	CITATIONS
19	The effect of sterilization methods on electronspun poly(lactideâ€ <i>co</i> à€glycolide) and subsequent adhesion efficiency of mesenchymal stem cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 700-708.	1.6	35
20	Association of electrospinning with electrospraying: a strategy to produce 3D scaffolds with incorporated stem cells for use in tissue engineering. International Journal of Nanomedicine, 2015, 10, 5159.	3.3	32
21	Biomaterials for bone regeneration: an orthopedic and dentistry overview. Brazilian Journal of Medical and Biological Research, 2021, 54, e11055.	0.7	31
22	In Vivo Immunogenic Response to Allogeneic Mesenchymal Stem Cells and the Role of Preactivated Mesenchymal Stem Cells Cotransplanted with Allogeneic Islets. Stem Cells International, 2017, 2017, 1-12.	1,2	30
23	Mesenchymal Stem Cell Adherence on Poly(D, L-Lactide-Co-Glycolide) Nanofibers Scaffold is Integrin- <l>l²</l> 1 Receptor Dependent. Journal of Biomedical Nanotechnology, 2012, 8, 211-218.	0.5	27
24	A novel globular protein electrospun fiber mat with the addition of polysilsesquioxane. International Journal of Biological Macromolecules, 2011, 49, 480-486.	3.6	26
25	Inhibition of filamentous fungi by ketoconazole-functionalized electrospun nanofibers. European Journal of Pharmaceutical Sciences, 2016, 84, 70-76.	1.9	26
26	Bioactive gel-glasses with distinctly different compositions: Bioactivity, viability of stem cells and antibiofilm effect against Streptococcus mutans. Materials Science and Engineering C, 2017, 76, 233-241.	3.8	26
27	Biofunctionalized Nanofibers Using <i>Arthrospira</i> (<i>Spirulina</i>) Biomass and Biopolymer. BioMed Research International, 2015, 2015, 1-8.	0.9	25
28	Application of PLGA/FGF-2 coaxial microfibers in spinal cord tissue engineering: an <i>in vitro</i> and <i>in vivo</i> investigation. Regenerative Medicine, 2018, 13, 785-801.	0.8	25
29	Electrospun and Electrosprayed Scaffolds for Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1078, 79-100.	0.8	24
30	Poly (lactide-co-glycolide) (PLGA) Scaffold Induces Short-term Nerve Regeneration and Functional Recovery Following Sciatic Nerve Transection in Rats. Neuroscience, 2019, 396, 94-107.	1.1	24
31	Development of a conduit of PLGA-gelatin aligned nanofibers produced by electrospinning for peripheral nerve regeneration. Chemico-Biological Interactions, 2021, 348, 109621.	1.7	22
32	Novel Chemically Modified Bacterial Cellulose Nanocomposite as Potential Biomaterial for Stem Cell Therapy Applications. Current Stem Cell Research and Therapy, 2014, 9, 117-123.	0.6	22
33	Nanotechnology for the Treatment of Spinal Cord Injury. Tissue Engineering - Part B: Reviews, 2021, 27, 353-365.	2.5	20
34	Nanofiber Scaffolds Support Bone Regeneration Associated with Pulp Stem Cells. Current Stem Cell Research and Therapy, 2014, 9, 330-337.	0.6	20
35	Development of a biomaterial associated with mesenchymal stem cells and keratinocytes for use as a skin substitute. Regenerative Medicine, 2015, 10, 975-987.	0.8	19
36	3D-Printed PCL Scaffolds for the Cultivation of Mesenchymal Stem Cells. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 19-25.	0.7	19

3

#	Article	IF	CITATIONS
37	Extraction of poly(3-hydroxybutyrate) from Spirulina LEB 18 for developing nanofibers. Polimeros, 2015, 25, 161-167.	0.2	15
38	Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering. Journal of Biological Physics, 2018, 44, 245-271.	0.7	14
39	Repeated three-hour maternal deprivation as a model of early-life stress alters maternal behavior, olfactory learning and neural development. Neurobiology of Learning and Memory, 2019, 163, 107040.	1.0	13
40	Development of fibrous PLGA/fibrin scaffolds as a potential skin substitute. Biomedical Materials (Bristol), 2020, 15, 055014.	1.7	13
41	VPA/PLGA microfibers produced by coaxial electrospinning for the treatment of central nervous system injury. Brazilian Journal of Medical and Biological Research, 2020, 53, e8993.	0.7	12
42	In vitro antioxidant and enzymatic approaches to evaluate neuroprotector potential of Blechnum extracts without cytotoxicity to human stem cells. Pharmacognosy Magazine, 2016, 12, 171.	0.3	12
43	Wettability and cell spreading enhancement in poly(sulfone) and polyurethane surfaces by UV-assisted treatment for tissue engineering purposes. Tissue Engineering and Regenerative Medicine, 2014, 11, 23-31.	1.6	11
44	Natamycin-loaded electrospun poly ($\hat{l}\mu$ -caprolactone) nanofibers as an innovative platform for antifungal applications. SN Applied Sciences, 2020, 2, 1.	1.5	11
45	Bioprinting: A promising approach for tissue regeneration. Bioprinting, 2021, 22, e00130.	2.9	11
46	Neural Differentiation of Mesenchymal Stem Cells on Scaffolds for Nerve Tissue Engineering Applications. Cellular Reprogramming, 2016, 18, 369-381.	0.5	10
47	Treatment of a burn animal model with functionalized tridimensional electrospun biomaterials. Journal of Biomaterials Applications, 2017, 32, 663-676.	1.2	10
48	Hypoxia upregulates the expression of the pluripotency markers in the stem cells from human deciduous teeth. Clinical Oral Investigations, 2019, 23, 199-207.	1.4	10
49	Toxicity of oleate-based amino protic ionic liquids towards Escherichia coli, Danio rerio embryos and human skin cells. Journal of Hazardous Materials, 2022, 422, 126896.	6.5	9
50	Dissolution, bioactivity behavior, and cytotoxicity of 19. <scp>58Li₂0</scp> ·11. <scp>10ZrO₂</scp> ·69. <scp>32SiO₂</scp> glass–ceramic. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 67-78.	1.6	8
51	The role of stem cellâ€derived exosomes in the repair of cutaneous and bone tissue. Journal of Cellular Biochemistry, 2022, 123, 183-201.	1.2	8
52	Intracardiac Injection of Dental Pulp Stem Cells After Neonatal Hypoxia-Ischemia Prevents Cognitive Deficits in Rats. Neurochemical Research, 2018, 43, 2268-2276.	1.6	7
53	Poly(trimethylene carbonate-co-L-lactide) electrospun scaffolds for use as vascular grafts. Brazilian Journal of Medical and Biological Research, 2019, 52, e8318.	0.7	7
54	Galantamine improves functional recovery and reduces lesion size in a rat model of spinal cord injury. Brain Research, 2019, 1724, 146424.	1.1	7

#	Article	lF	CITATIONS
55	Avalia§ão dos critérios de liberação direta dos resultados de hemogramas através de contadores eletrônicos. Revista Brasileira De Hematologia E Hemoterapia, 2004, 26, 159.	0.7	6
56	Relevant biological processes for tissue development with stem cells and their mechanistic modeling: A review. Mathematical Biosciences, 2018, 301, 147-158.	0.9	6
57	SENSITIVITY ANALYSIS FOR MODEL COMPARISON AND SELECTION IN TISSUE ENGINEERING. Brazilian Journal of Chemical Engineering, 2019, 36, 383-391.	0.7	5
58	The Current State of Research with Human Pluripotent Stem Cells in Brazil. Stem Cells and Development, 2014, 23, 20-23.	1.1	4
59	Effect of feeder free poly(lactideâ€ <i>co</i> â€glycolide) scaffolds on morphology, proliferation, and pluripotency of mouse embryonic stem cells. Journal of Biomedical Materials Research - Part A, 2017, 105, 424-432.	2.1	3
60	Process System Engineering Methodologies Applied to Tissue Development and Regenerative Medicine. Advances in Experimental Medicine and Biology, 2018, 1078, 445-463.	0.8	3
61	HA-hybrid matrix composite coating on Ti-Cp for biomedical application. Journal of Materials Science: Materials in Medicine, 2020, 31, 82.	1.7	3
62	Identification of compounds from non-polar fractions of <i>Blechnum</i> spp and a multitarget approach involving enzymatic modulation and oxidative stress. Journal of Pharmacy and Pharmacology, 2016, 69, 89-98.	1.2	3
63	Characterization, Cytotoxicity and Anti-Inflammatory Effect Evaluation of Nanocapsules Containing Nicotine. Bioengineering, 2021, 8, 172.	1.6	2
64	Human rights cannot cover cells that were never in the womb. Nature, 2009, 458, 147-147.	13.7	1
65	Stem Cells from Umbilical Cord Blood. , 2009, , 27-90.		1
66	Umbilical Cord Blood Transfusion and Its Therapeutic Potentialities. , 2011, , 45-56.		1
67	Evaluation of semi-automated cells counting in peritoneal fluid. Jornal Brasileiro De Patologia E Medicina Laboratorial, 2015, 51, 224-228.	0.3	1
68	Isolation, immunophenotypic characterization and pluripotency of dental pulp stem cells. Dental, Oral, and Craniofacial Research, 2017, 3, .	0.1	1
69	3D electrospinning used in medical materials. International Journal of Advances in Medical Biotechnology - IJAMB, 2019, 2, 27.	0.1	1
70	Nanopolymers: Powerful Tools in Neuroprotection and Neuroregeneration. Current Nanoscience, 2022, 18, 668-674.	0.7	1
71	3D-printed scaffolds for the cultivation of mesenchymal stem cells. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 361-366.	0.4	0
72	A sensitivity analysis for tissue development by varying model parameters and input variables. Canadian Journal of Chemical Engineering, 2018, 96, 2334-2341.	0.9	0

#	Article	IF	CITATIONS
73	Osteogenic differentiation of mesenchymal stem cells on hybrid coatings sterilized by different processes. Journal of Materials Research, 2019, 34, 3400-3411.	1.2	0
74	Stem cell grafts as therapeutic tools for central nervous system disorders Psychology and Neuroscience, 2008, 1, 47-54.	0.5	0
75	Stem Cell's Behavioral Effects in Rats in a Model of Alzheimer's Disease. Advances in Stem Cells, 0, , 1-13.	0.0	o