
Kohtaro Minami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9430687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drug delivery for neuronopathic lysosomal storage diseases: evolving roles of the blood brain barrier and cerebrospinal fluid. Metabolic Brain Disease, 2022, 37, 1745-1756.	1.4	11
2	Dose-dependent effects of a brain-penetrating iduronate-2-sulfatase on neurobehavioral impairments in mucopolysaccharidosis II mice. Molecular Therapy - Methods and Clinical Development, 2022, 25, 534-544.	1.8	9
3	Treatment of Neuronopathic Mucopolysaccharidoses with Blood–Brain Barrier-Crossing Enzymes: Clinical Application of Receptor-Mediated Transcytosis. Pharmaceutics, 2022, 14, 1240.	2.0	9
4	Clearance of heparan sulfate in the brain prevents neurodegeneration and neurocognitive impairment in MPS II mice. Molecular Therapy, 2021, 29, 1853-1861.	3.7	24
5	Nonclinical safety evaluation of pabinafusp alfa, an anti-human transferrin receptor antibody and iduronate-2-sulfatase fusion protein, for the treatment of neuronopathic mucopolysaccharidosis type II. Molecular Genetics and Metabolism Reports, 2021, 27, 100758.	0.4	11
6	Enzyme Replacement Therapy with Pabinafusp Alfa for Neuronopathic Mucopolysaccharidosis II: An Integrated Analysis of Preclinical and Clinical Data. International Journal of Molecular Sciences, 2021, 22, 10938.	1.8	20
7	Physicochemical and biological evaluation of JR-131 as a biosimilar to a long-acting erythropoiesis-stimulating agent darbepoetin alfa. PLoS ONE, 2020, 15, e0231830.	1.1	2
8	Gs/Gq signaling switch in \hat{I}^2 cells defines incretin effectiveness in diabetes. Journal of Clinical Investigation, 2020, 130, 6639-6655.	3.9	46
9	Iduronate-2-Sulfatase with Anti-human Transferrin Receptor Antibody for Neuropathic Mucopolysaccharidosis II: A Phase 1/2 Trial. Molecular Therapy, 2019, 27, 456-464.	3.7	105
10	A Blood-Brain-Barrier-Penetrating Anti-human Transferrin Receptor Antibody Fusion Protein for Neuronopathic Mucopolysaccharidosis II. Molecular Therapy, 2018, 26, 1366-1374.	3.7	141
11	Inhibition of SNAT5 Induces Incretin-Responsive State From Incretin-Unresponsive State in Pancreatic β-Cells: Study of β-Cell Spheroid Clusters as a Model. Diabetes, 2018, 67, 1795-1806.	0.3	10
12	Non-clinical evaluation of JR-051 as a biosimilar to agalsidase beta for the treatment of Fabry disease. Molecular Genetics and Metabolism, 2018, 125, 153-160.	0.5	6
13	Essential roles of aspartate aminotransferase 1 and vesicular glutamate transporters in β-cell glutamate signaling for incretin-induced insulin secretion. PLoS ONE, 2017, 12, e0187213.	1.1	15
14	Meal sequence and glucose excursion, gastric emptying and incretin secretion in type 2 diabetes: a randomised, controlled crossover, exploratory trial. Diabetologia, 2016, 59, 453-461.	2.9	69
15	A Novel Diphenylthiosemicarbazide Is a Potential Insulin Secretagogue for Anti-Diabetic Agent. PLoS ONE, 2016, 11, e0164785.	1.1	3
16	Liraglutide Improves Pancreatic Beta Cell Mass and Function in Alloxan-Induced Diabetic Mice. PLoS ONE, 2015, 10, e0126003.	1.1	55
17	Preferential gene expression and epigenetic memory of induced pluripotent stem cells derived from mouse pancreas. Genes To Cells, 2015, 20, 367-381.	0.5	15
18	Glutamate Acts as a Key Signal Linking Glucose Metabolism to Incretin/cAMP Action to Amplify Insulin Secretion, Cell Reports, 2014, 9, 661-673.	2.9	128

Kohtaro Minami

#	Article	IF	CITATIONS
19	Searching for stem cells in the adult pancreas: A futile effort?. Journal of Diabetes Investigation, 2013, 4, 331-333.	1.1	0
20	<scp>GATA</scp> transcription factors: New key regulators in pancreas organogenesis. Journal of Diabetes Investigation, 2013, 4, 426-427.	1.1	4
21	Cephalic phase insulin secretion is KATP channel independent. Journal of Endocrinology, 2013, 218, 25-33.	1.2	48
22	Current status of regeneration of pancreatic βâ€cells. Journal of Diabetes Investigation, 2013, 4, 131-141.	1.1	10
23	Conditional Hypovascularization and Hypoxia in Islets Do Not Overtly Influence Adult \hat{I}^2 -Cell Mass or Function. Diabetes, 2013, 62, 4165-4173.	0.3	23
24	PGRN is a Key Adipokine Mediating High Fat Diet-Induced Insulin Resistance and Obesity through IL-6 in Adipose Tissue. Cell Metabolism, 2012, 15, 38-50.	7.2	222
25	Response to Dupuis, Petersen, and Weydt. Cell Metabolism, 2012, 15, 270.	7.2	0
26	In vitro generation of insulin-secreting cells from human pancreatic exocrine cells. Journal of Diabetes Investigation, 2011, 2, 271-275.	1.1	5
27	Pancreatic β-cells are generated by neogenesis from non-β-cells after birth. Biomedical Research, 2011, 32, 167-174.	0.3	24
28	Dynamics of insulin secretion and the clinical implications for obesity and diabetes. Journal of Clinical Investigation, 2011, 121, 2118-2125.	3.9	290
29	Pancreatic .BETAcell signaling: toward better understanding of diabetes and its treatment. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2010, 86, 563-577.	1.6	32
30	Mature acinar cells are refractory to carcinoma development by targeted activation of Ras oncogene in adult rats. Cancer Science, 2010, 101, 341-346.	1.7	16
31	Rim2α Determines Docking and Priming States in Insulin Granule Exocytosis. Cell Metabolism, 2010, 12, 117-129.	7.2	97
32	Establishment of new clonal pancreatic βâ€cell lines (MIN6â€K) useful for study of incretin/cyclic adenosine monophosphate signaling. Journal of Diabetes Investigation, 2010, 1, 137-142.	1.1	36
33	Tracing phenotypic reversibility of pancreatic βâ€cells <i>in vitro</i> . Journal of Diabetes Investigation, 2010, 1, 242-251.	1.1	4
34	Tracing phenotypic reversibility of pancreatic β-cells in vitro. Journal of Diabetes Investigation, 2010, 1, no-no.	1.1	0
35	The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs. Science, 2009, 325, 607-610.	6.0	198
36	Role of Cadherin-mediated Cell-Cell Adhesion in Pancreatic Exocrine-to-Endocrine Transdifferentiation. Journal of Biological Chemistry, 2008, 283, 13753-13761.	1.6	36

Kohtaro Minami

#	Article	IF	CITATIONS
37	Pancreatic acinar-to-beta cell transdifferentiation in vitro. Frontiers in Bioscience - Landmark, 2008, Volume, 5824.	3.0	28
38	Induction by NeuroD of the components required for regulated exocytosis. Biochemical and Biophysical Research Communications, 2007, 354, 271-277.	1.0	11
39	Generation of insulin-secreting cells from pancreatic acinar cells of animal models of type 1 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E158-E165.	1.8	45
40	Essential Role of Ubiquitin-Proteasome System in Normal Regulation of Insulin Secretion. Journal of Biological Chemistry, 2006, 281, 13015-13020.	1.6	51
41	Spontaneous Recovery From Hyperglycemia by Regeneration of Pancreatic Â-Cells in Kir6.2G132S Transgenic Mice. Diabetes, 2006, 55, 1930-1938.	0.3	25
42	PDX-1 Protein is Internalized by Lipid Raft-Dependent Macropinocytosis. Cell Transplantation, 2005, 14, 637-645.	1.2	44
43	Cell Permeable Peptide of JNK Inhibitor Prevents Islet Apoptosis Immediately After Isolation and Improves Islet Graft Function. American Journal of Transplantation, 2005, 5, 1848-1855.	2.6	80
44	Distinct Effects of Glucose-Dependent Insulinotropic Polypeptide and Glucagon-Like Peptide-1 on Insulin Secretion and Gut Motility. Diabetes, 2005, 54, 1056-1063.	0.3	103
45	Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15116-15121.	3.3	249
46	Roles of ATP-Sensitive K+ Channels as Metabolic Sensors: Studies of Kir6.x Null Mice. Diabetes, 2004, 53, S176-S180.	0.3	94
47	ATP-sensitive K+ channel-mediated glucose uptake is independent of IRS-1/phosphatidylinositol 3-kinase signaling. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E1289-E1296.	1.8	18
48	Normalization of Intracellular Ca2+ Induces a Glucose-responsive State in Glucose-unresponsive β-Cells. Journal of Biological Chemistry, 2002, 277, 25277-25282.	1.6	21
49	ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E1178-E1184.	1.8	81
50	ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nature Neuroscience, 2001, 4, 507-512.	7.1	470
51	Insulin secretion and differential gene expression in glucose-responsive and -unresponsive MIN6 sublines. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E773-E781.	1.8	116
52	Stimulation of in <i>Vitro</i> Insulin Action by Glycinin Acidic Subunit A _{1 a} . Agricultural and Biological Chemistry, 1991, 55, 1033-1039.	0.3	0
53	Identification of soybean protein components that modulate the action of insulin in vitro Agricultural and Biological Chemistry, 1990, 54, 511-517.	0.3	12
54	Bile acid-binding protein from soybean seed: Isolation, partial characterization and insulin-stimulating activity Agricultural and Biological Chemistry, 1988, 52, 803-809.	0.3	25