Benoit Rigo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9430676/publications.pdf Version: 2024-02-01

RENOIT RICO

#	Article	IF	CITATIONS
1	Synthesis of condensed quinolines and quinazolines as DNA ligands. Bioorganic and Medicinal Chemistry, 2004, 12, 641-647.	1.4	104
2	From Conventional Lewis Acids to Heterogeneous Montmorillonite K10: Ecoâ€Friendly Plantâ€Based Catalysts Used as Green Lewis Acids. ChemSusChem, 2018, 11, 1249-1277.	3.6	56
3	Studies on indolizines. Evaluation of their biological properties as microtubule-interacting agents and as melanoma targeting compounds. European Journal of Medicinal Chemistry, 2015, 89, 115-127.	2.6	40
4	Studies on pyrrolidinones. Derivatives of 1,2,3,5,10,10aâ€hexahydrobenz[<i>f</i>]indolizineâ€3,10â€dione. Journal of Heterocyclic Chemistry, 1983, 20, 893-898.	1.4	38
5	3-Carboxamido-5-aryl-isoxazoles as new CB2 agonists for the treatment of colitis. Bioorganic and Medicinal Chemistry, 2013, 21, 5383-5394.	1.4	36
6	Studies on pyrrolidinones. Synthesis of <i>N</i> â€acylpyroglutamic esters with bactericide and fungicide properties. Journal of Heterocyclic Chemistry, 1988, 25, 49-57.	1.4	35
7	Synthesis and anticancer activity of analogues of phenstatin, with a phenothiazine A-ring, as a new class of microtubule-targeting agents. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 147-152.	1.0	32
8	Studies on pyrrolidones. Convenient syntheses of methyl, methyl <i>N</i> â€methyl―and methyl <i>N</i> â€methoxymethylpyroglutamate. Journal of Heterocyclic Chemistry, 1991, 28, 1143-1146.	1.4	31
9	Original 2-Alkylamino-6-halogenoquinazolin-4(3H)-ones and KATPChannel Activity. Journal of Medicinal Chemistry, 2001, 44, 2575-2585.	2.9	31
10	Synthesis and biological evaluation of fluoro analogues of antimitotic phenstatin. Bioorganic and Medicinal Chemistry, 2013, 21, 2932-2940.	1.4	29
11	Novel potent substance P and neurokinin A receptor antagonists. Conception, synthesis and biological evaluation of indolizine derivatives. Bioorganic and Medicinal Chemistry, 2002, 10, 2905-2912.	1.4	28
12	A new method of bromination of aromatic rings by an iso-amyl nitrite/HBr system. Tetrahedron, 2008, 64, 4999-5004.	1.0	28
13	Synthesis and biological evaluation of phenstatin metabolites. Bioorganic and Medicinal Chemistry, 2011, 19, 6042-6054.	1.4	28
14	Design, synthesis and evaluation of hydrazine and acyl hydrazone derivatives of 5-pyrrolidin-2-one as antifungal agents. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127220.	1.0	28
15	Studies on pyrrolidones. Synthesis and <i>N</i> â€alkylation of βâ€enaminoesters derived from pyroglutamic acid. Journal of Heterocyclic Chemistry, 1992, 29, 1285-1291.	1.4	26
16	A study of hydrogenation of benzhydrols in the presence of catalytic amount of triflic acid. Canadian Journal of Chemistry, 2000, 78, 1242-1246.	0.6	25
17	Discovery of indolizines containing triazine moiety as new leads for the development of antitumoral agents targeting mitotic events. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3975-3979.	1.0	25
18	Pyroglutamide-Based P2X7 Receptor Antagonists Targeting Inflammatory Bowel Disease. Journal of Medicinal Chemistry, 2020, 63, 2074-2094.	2.9	24

#	Article	IF	CITATIONS
19	Toward new camptothecins. Part 6: Synthesis of crucial ketones and their use in FriedlÃ ¤ der reaction. Tetrahedron, 2010, 66, 7544-7561.	1.0	23
20	Studies on phenothiazines: New microtubule-interacting compounds with phenothiazine A-ring as potent antineoplastic agents. Bioorganic and Medicinal Chemistry, 2016, 24, 2307-2317.	1.4	23
21	Synthesis and biological evaluation of a new series of phenothiazine-containing protein farnesyltransferase inhibitors. European Journal of Medicinal Chemistry, 2013, 59, 101-110.	2.6	22
22	On the cyclization of acyliminium salts derived from pyroglutamic acid. Tetrahedron Letters, 1996, 37, 485-486.	0.7	21
23	Studies on pyrrolidinones. Synthesis of <i>N</i> â€acylpyroglutamic acids having bactericide and fungicide properties. Journal of Heterocyclic Chemistry, 1988, 25, 59-63.	1.4	20
24	Studies on Pyrrolidinones. An Improved One Pot Synthesis of 1,2,3,5,10,10a-Hexahydrobenz[f]indolizine-3,10-dione. Synthetic Communications, 1994, 24, 2609-2615.	1.1	20
25	Enantioseparation of pyroglutamide derivatives on polysaccharide based chiral stationary phases by high-performance liquid chromatography and supercritical fluid chromatography: A comparative study. Journal of Chromatography A, 2014, 1363, 257-269.	1.8	19
26	Studies on pyrrolidinones. Synthesis of methyl <i>N</i> â€(4â€nitrobenzyl)pyroglutamate. Journal of Heterocyclic Chemistry, 1985, 22, 207-208.	1.4	18
27	From dicarbonylallene to 1-aryl-3,6-dimethyl-4-aminoaryl-2-pyridones: a one-pot versatile and uncatalyzed synthesis. Tetrahedron, 2007, 63, 10511-10520.	1.0	18
28	Bis (trimethylsilyl) amide as nitrile precursor. Tetrahedron Letters, 1986, 27, 347-348.	0.7	17
29	Studies on pyrrolidinones. Synthesis and cyclization of <i>N</i> â€{l±â€naphthylâ€(3,4,5â€trimethoxyphenyl)â€methyl]pyroglutamic acid. Journal of Heterocyclic Chemistry, 2000, 37, 215-227.	1.4	17
30	Towards new camptothecins. Part 3: Synthesis of 5-methoxycarbonyl camptothecin. Tetrahedron, 2006, 62, 3959-3968.	1.0	17
31	Etude dans la série des pyrrolidinones. IV. Formation de quelques dérivés de l'acide L méthylène bisN-(oxo-5 pyrrolidine carboxylique-2). Journal of Heterocyclic Chemistry, 1980, 17, 1447-1453.	1.4	16
32	Reaction of Hexamethyldisilazane with Diacylhydrazines : An Easy 1,3,4-Oxadiazole Synthesis. Synthetic Communications, 1986, 16, 1665-1669.	1.1	16
33	ZrCl4 as a new catalyst for ester amidation: an efficient synthesis of h-P2X7R antagonists. Tetrahedron Letters, 2016, 57, 1165-1170.	0.7	16
34	New dehydration in the pyrrolo[1,2-6-b]isoquinoline series. Preparation and structural identification of 3,5-dihydrobenz[f]indolizin-3-one. Journal of Heterocyclic Chemistry, 1990, 27, 1383-1386.	1.4	15
35	Synthesis of 2â€aminoâ€1,4â€dihydroâ€4â€quinolinones and diaminomethylene meldrum's acids derivatives as potential potassium channel openers. Journal of Heterocyclic Chemistry, 2002, 39, 15-28.	1.4	15
36	Studies on pyrrolidinones. On the application of copper-catalyzed arylation of methyl pyroglutamate to obtain a new benzo[de]quinoline scaffold. Tetrahedron, 2010, 66, 215-221.	1.0	15

#	Article	IF	CITATIONS
37	Toward new camptothecins. Part 7: Synthesis of thioluotonin and its 5-methoxycarbonyl derivative. Tetrahedron Letters, 2011, 52, 1592-1596.	0.7	15
38	Studies on pyrrolidinones. A convenient synthesis of 5 yanoâ€2â€pyrrolidinone derivatives. Journal of Heterocyclic Chemistry, 1986, 23, 183-184.	1.4	14
39	Acid Catalyzed Cyclization of Bis Silyl Diacylhydrazines: A New 1, 3, 4-Oxadiazole Synthesis. Synthetic Communications, 1988, 18, 1247-1251.	1.1	14
40	Disilylated Compounds as Precursors of Heterocycles: A New and Easy Oxadiazole Synthesis. Synthetic Communications, 1989, 19, 2321-2335.	1.1	14
41	Studies on Pyrrolidinones. A New Rearrangement of Pyrrolo[1,2-b]Isoquinolines Derivatives. Synthetic Communications, 1991, 21, 741-747.	1.1	14
42	Studies on pyrrolidinone. Synthesis of aza analogs of podophyllotoxin and related compounds. Journal of Heterocyclic Chemistry, 1999, 36, 1263-1270.	1.4	14
43	Reaction of Trimethylsilyl Benzhydryl Ethers with Methyl N-(Trimethylsilyl)pyroglutamate: an Easy and Rapid N-Alkylation. Synlett, 1997, 1997, 998-1000.	1.0	13
44	Studies on pyrrolidinones. Synthesis of 1,2,3,5,11,11aâ€hexahydroindolizino[7,6â€ <i>b</i>]indoleâ€3,11â€dione Journal of Heterocyclic Chemistry, 1999, 36, 997-1000.	. 1.4	13
45	Towards new camptothecins. Part 2: Synthesis of the ABCD ring scaffold substituted by a carboxyl group in the 5-position. Tetrahedron, 2005, 61, 7916-7923.	1.0	13
46	On the discovery of new potent human farnesyltransferase inhibitors: emerging pyroglutamic derivatives. Organic and Biomolecular Chemistry, 2017, 15, 8110-8118.	1.5	13
47	Studies on Pyrrolidinones. An Improved Synthesis of Pyroglutamoyl Chloride. Synthetic Communications, 1994, 24, 2597-2607.	1.1	12
48	Studies on pyrrolidinones. Oxidations and rearrangements in the hexahydrobenz[f]indolizine-3,10-dione series. Tetrahedron, 2006, 62, 4400-4407.	1.0	12
49	Toward new camptothecins. Part 5: On the synthesis of precursors for the crucial FriedlÃ ¤ der reaction. Tetrahedron, 2009, 65, 2455-2466.	1.0	12
50	Synthesis and biological evaluation of a new series of N-ylides as protein farnesyltransferase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5887-5892.	1.0	12
51	Peptide chemistry applied to a new family of phenothiazine-containing inhibitors of human farnesyltransferase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3180-3185.	1.0	12
52	Switching cannabinoid response from CB2 agonists to FAAH inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1322-1326.	1.0	12
53	Studies on pyrrolidinones. A convenient synthesis of 2â€methylâ€5â€(5â€oxoâ€1â€benzylâ€2â€pyrrolidinyl)â€1,3,4â€oxadiazole. Journal of Heterocyclic Chemistry, 1 253-254.	986, 23,	11
54	Studies on pyrrolidinones. Synthesis and reactivity of some <i>n</i> â€protected pyroglutamic derivatives. Journal of Heterocyclic Chemistry, 1995, 32, 1599-1604.	1.4	11

#	Article	IF	CITATIONS
55	Studies on pyrrolidinones. synthesis of <i>N</i> â€(2â€nitrobenzyl)pyroglutamic acid. Journal of Heterocyclic Chemistry, 1996, 33, 1063-1066.	1.4	11
56	Studies on pyrrolidones. An improved synthesis of <i>N</i> â€arylmethyl pyroglutamic acids. Journal of Heterocyclic Chemistry, 2003, 40, 989-993.	1.4	11
57	Design, synthesis and antifungal activity of pterolactam-inspired amide Mannich bases. Fìtoterapìâ, 2020, 143, 104581.	1.1	11
58	Studies on Pyrrolidinones. A Silylated Approach to Fused Triazoles. Synthetic Communications, 1994, 24, 3055-3063.	1.1	10
59	Studies on pyrrolidinones. Preparation of 1,5,6â€10bâ€ŧetrahydroâ€2 <i>H</i> â€pyrrolo[1,2â€ <i>c</i>]quinazolineâ€3â€ones from pyroglutamic acid. Jou Heterocyclic Chemistry, 2000, 37, 143-150.	urnna¥tof	10
60	A new synthesis of pyrrolo[3,2-b]quinolines by a tandem electrocyclization–oxidation process. Tetrahedron, 2008, 64, 7266-7272.	1.0	10
61	In Vitro Metabolism of Phenstatin: Potential Pharmacological Consequences. Drug Metabolism Letters, 2011, 5, 209-215.	0.5	10
62	Studies on pyrrolidinones. Synthesis of 4,5-fused-3-hydroxypyridinyl-2-propionic acid derivatives. Tetrahedron, 2012, 68, 1117-1127.	1.0	10
63	Studies on pyrrolidinones. Synthesis of 5â€(5â€oxoâ€2â€pyrrolidinyl)â€1,2,4â€triazoleâ€3â€thione derivatives. of Heterocyclic Chemistry, 1989, 26, 1723-1727.	Journal 1.4	9
64	Studies on pyrrolidones. Synthesis and reactivity of βâ€enaminomonoâ€esters and βâ€enaminomononitriles derived from pyroglutamic acid. Journal of Heterocyclic Chemistry, 1994, 31, 829-835.	1.4	9
65	Studies on pyrrolidinones. Synthesis of 1â€{(<i>N</i> â€acetylarylamino)methyl]pyroglutamic acid derivatives. Journal of Heterocyclic Chemistry, 1998, 35, 555-565.	1.4	9
66	Synthesis of 2â€aminoquinazolincâ€4(3 <i>H</i>)â€one derivatives as potential potassium channel openers. Journal of Heterocyclic Chemistry, 2000, 37, 253-260.	1.4	9
67	Conformationally constrained dipeptides. Obtention of enantiomerically pure 6â€acetamidoâ€5â€oxoâ€1,2,3,5,6,7â€hexahydroâ€3â€indolizine carboxylic acid. Journal of Heterocyclic Chemi 2000, 37, 1491-1494.	stry,4	9
68	Studies on pyrrolidinones: Some attempts to improve the anticancer properties of methyl <i>n</i> â€(3,4,4′,5â€ŧetramethoxybenzhydryl)pyroglutamate (HEl 81). Journal of Heterocyclic Chemistry, 2002, 39, 119-124.	1.4	9
69	Discovery of ferrocene-containing farnesyltransferase inhibitors. Investigation of bulky lipophilic groups for the A2 binding site of farnesyltransferase. MedChemComm, 2012, 3, 1147.	3.5	9
70	Antagonists of the <scp>P</scp> 2X7 receptor: Mechanism of enantioselective recognition using highly sulfated and sulfobutylether cyclodextrins by capillary electrokinetic chromatography. Electrophoresis, 2014, 35, 2892-2899.	1.3	9
71	Phenothiazine-based CaaX competitive inhibitors of human farnesyltransferase bearing a cysteine, methionine, serine or valine moiety as a new family of antitumoral compounds. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4447-4452.	1.0	9
72	Impact of Functional Groups on the Copper-Initiated N-Arylation of 5-Functionalized Pyrrolidin-2-ones and Their Vinylogues. Synthesis, 2016, 48, 2226-2244.	1.2	9

#	Article	IF	CITATIONS
73	New salicylic acid and pyroglutamic acid conjugated derivatives confer protection to bread wheat against <i>Zymoseptoria tritici</i> . Journal of the Science of Food and Agriculture, 2019, 99, 1780-1786.	1.7	9
74	Allylic Dehydration, Retro-Pinacol, Pinacol-like and Enamide Reactions: Synthesis of New Isoquinolines. Heterocycles, 2004, 63, 1855.	0.4	9
75	Studies on pyrrolidinones. Synthesis of 2â€(5â€oxoâ€2â€pyrrolidinyl)â€1,3,4â€oxadiazoles and 2â€(5â€oxoâ€2â€pyrrolidinyl)benzimidazoles. Journal of Heterocyclic Chemistry, 1993, 30, 921-927.	1.4	8
76	Studies on pyrrolidinones. Synthesis of <i>N</i> â€benzhydrylpyroglutamic acids and esters. Journal of Heterocyclic Chemistry, 1998, 35, 567-573.	1.4	8
77	Triflic Acid Catalyzed Intermolecular α-Amination of Pterolactams To Give 5-Arylaminopyrrolidinones via N-Acyliminium Species. Synlett, 2016, 27, 934-940.	1.0	8
78	Discovery of highly functionalized scaffolds: Pyrroloimidazolediones as P2X7 receptor antagonists. Tetrahedron, 2017, 73, 5327-5336.	1.0	8
79	Benzo[7,8]indolizinoquinoline scaffolds based on Mg(ClO4)2-promoted regiospecific imide reduction and π-cyclization of N-acyliminium species. Analogues of the topo-1 poison rosettacin and 22-hydroxyacuminatine alkaloids. Arabian Journal of Chemistry, 2019, 12, 680-693.	2.3	8
80	Phenyliodine(III) Diacetate/I ₂ â€Mediated Domino Approach for Pyrrolo[1,4]Thiazines and 1,4â€Thiazines by a Oneâ€Pot Morin Rearrangement of N,S <i>â€</i> Acetals. Chemistry - A European Journal, 2019, 25, 6113-6118.	1.7	8
81	Exploring isoxazoles and pyrrolidinones decorated with the 4,6â€dimethoxyâ€1,3,5â€ŧriazine unit as human farnesyltransferase inhibitors. Archiv Der Pharmazie, 2019, 352, e1800227.	2.1	8
82	Studies on pyrrolidones. Reactivity of βâ€enaminoesters derived from pyroglutamic acid. Synthesis of methyl cyano[lâ€methylâ€5â€(5â€methyl[1,3,4]oxadiazolâ€2â€yl)pyrrolidinâ€2â€ylidene]acetate. Journal of He Chemistry, 1996, 33, 1951-1957.	te no €yclic	7
83	A new scaffold for dipeptide βâ€ŧurn mimetics: Expeditious synthesis of an unsaturated 6,5â€fused bicyclic lactam. Journal of Heterocyclic Chemistry, 1999, 36, 1279-1284.	1.4	7
84	Studies on pyrrolidinones: Some attempts to improve the synthesis of methyl <i>n</i> â€(3,4,4′,5â€ŧetramethoxybenzhydryl)pyroglutamate (hei 81) by using <i>n</i> â€acyl iminium salts methodologies. Journal of Heterocyclic Chemistry, 2002, 39, 109-118.	1.4	7
85	Toward new camptothecins. Part 4: On the reactivity of nitro and amino precursors of aza analogs of 5-methoxycarbonyl camptothecin. Tetrahedron, 2007, 63, 9456-9464.	1.0	7
86	An efficient one-pot reaction for the synthesis of pyrazolones bearing a phenothiazine unit. Tetrahedron Letters, 2012, 53, 6127-6131.	0.7	7
87	Eaton's Reagentâ€Mediated Domino Ï€â€Cationic Arylations of Aromatic Carboxylic Acids to Iasiâ€Red Polymethoxylated Polycyclic Aromatic Hydrocarbons: Products with Unprecedented Biological Activities as Tubulin Polymerization Inhibitors. Chemistry - A European Journal, 2014, 20, 10117-10130.	1.7	7
88	Synthesis and biological evaluation of a new class of triazin–triazoles as potential inhibitors of human farnesyltransferase. Research on Chemical Intermediates, 2016, 42, 1999-2021.	1.3	7
89	Studies on pyrrolidinones. Catalyst induced selectivity during heterocyclizations of organosilicon compounds into 1,3,4â€oxadiazoles or 1,2,4â€triazines. Journal of Heterocyclic Chemistry, 1996, 33, 1073-1077.	1.4	6
90	On the reaction of meldrum's acid withN-trimethylsilylanilines substituted by electron withdrawing groups. Journal of Heterocyclic Chemistry, 1999, 36, 1073-1075.	1.4	6

#	Article	IF	CITATIONS
91	Title is missing!. International Journal of Peptide Research and Therapeutics, 2000, 7, 269-279.	0.1	6
92	Studies on pyrrolidinones. synthesis of fused 1,5-naphthyridines. Tetrahedron, 2012, 68, 5644-5654.	1.0	6
93	Studies on pyrrolidinones. Reaction of pyroglutamic acid and vinylogues with aromatics in Eaton's reagent. Tetrahedron, 2012, 68, 1109-1116.	1.0	6
94	On the synthesis and biological properties of isocombretastatins: a case of ketone homologation during Wittig reaction attempts. RSC Advances, 2013, 3, 3683.	1.7	6
95	Methylene versus carbonyl bridge in the structure of new tubulin polymerization inhibitors with tricyclic A-rings. Bioorganic and Medicinal Chemistry, 2016, 24, 6021-6030.	1.4	6
96	Enhanced antitumor potential induced by chloroacetate-loaded benzophenones acting as fused tubulin-pyruvate dehydrogenase kinase 1 (PDHK1) ligands. Bioorganic Chemistry, 2020, 96, 103643.	2.0	6
97	A Convenient Method for the Conversion of a Carboxy Group into a 4,6-DiÂmethoxy-1,3,5-triazine Group: Application to N-Benzylpyroglutamic Acids. Synthesis, 2006, 2006, 2845-2848.	1.2	5
98	Antioxidant Activity of New Benzo[de]quinolines and Lactams: 2DQuantitative Structure-Activity Relationships. Medicinal Chemistry, 2012, 8, 942-946.	0.7	5
99	1,3,5â€Oxadiazine Framework by Oxygen vs. Nitrogen Trapping of an <i>N</i> â€Acyliminium Ion Derived from <i>N,O</i> â€bisâ€TMS Pyroglutamic Acid. ChemistrySelect, 2017, 2, 10654-10660.	0.7	5
100	Tuning the Selectivity: Study of Solventâ€Free Acidâ€Mediated Pinacolicâ€Pinacolone Rearrangement under Microwave Irradiation. ChemistrySelect, 2018, 3, 10236-10243.	0.7	5
101	Cesium salts as superior catalysts for solvent-free modifications of biosourced pterolactam. Molecular Catalysis, 2019, 470, 32-39.	1.0	5
102	Investigation of New Phenothiazine and Carbazole Derivatives as Potential Inhibitors of Human Farnesyltransferase. Letters in Drug Design and Discovery, 2014, 12, 85-92.	0.4	5
103	Studies on pyrrolidinones. Michael reaction of glutamic acid and diethylglutamate. Journal of Heterocyclic Chemistry, 1986, 23, 1769-1772.	1.4	4
104	Studies on pyrrolidinones. Synthesis of some <i>N</i> â€fatty acylpyroglutamic acids. Journal of Heterocyclic Chemistry, 1995, 32, 1489-1492.	1.4	4
105	Studies on pyrrolidinones. On the carbamoylation of some pyroglutamic derivatives. Journal of Heterocyclic Chemistry, 1996, 33, 1233-1237.	1.4	4
106	¹ H and ¹³ C Nmr Determination of Polysubstituted Diphenylmethane Dimers Mechanism of Their Formation by Reduction of Polymethoxylated Benzophenones. Spectroscopy Letters, 2000, 33, 755-775.	0.5	4
107	Synthesis of condensed pyridones by using a new ring switching reaction. Journal of Heterocyclic Chemistry, 2008, 45, 1525-1528.	1.4	4
108	The revisited synthesis of tert-butyl pyroglutamate derivatives. Tetrahedron, 2013, 69, 6821-6825.	1.0	4

#	Article	IF	CITATIONS
109	Studies on Pyrrolidinones: Chemistry of Dimethoxytriazines. Synthesis, 2013, 45, 1333-1340.	1.2	4
110	Evaluation and comparison of three different separation techniques for analysis of retroamide enantiomers and their biological evaluation against h-P2X7 receptor. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 986-987, 35-43.	1.2	4
111	Preparation of Pyrroles from Pyroglutamic Acid Derivatives. Synthetic Communications, 1990, 20, 1769-1776.	1.1	3
112	Studies on pyrrolidinones. Synthesis of some bioisosteres of 3,3,5â€ŧrimethylcyclohexyl pyroglutamate. Journal of Heterocyclic Chemistry, 1997, 34, 279-283.	1.4	3
113	An Improved Synthesis of Methyl 1,3-Dihydro-2H-pyrrolo[3,4-b]quinoline-2-carboxylate. Synthesis, 2007, 2007, 3319-3322.	1.2	3
114	DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides. Chemical Papers, 2011, 65, .	1.0	3
115	The Reactivity of Enantiopure (<i>S</i>)â€6â€Oxopipecolic Acid and Corresponding Pyridoisoquinolines Under Acidic Conditions. European Journal of Organic Chemistry, 2018, 2018, 5499-5511.	1.2	3
116	Siteâ€Selective Pdâ€Catalysed Fujiwaraâ€Moritani type Reaction of N,S â€Heterocyclic Systems with Olefins. Advanced Synthesis and Catalysis, 2021, 363, 1088-1095.	2.1	3
117	On the Silylation of Diarylcarbinols. Synthetic Communications, 1996, 24, 707-713.	1.1	3
118	1H and13C NMR Determination of 1-Naphtyl-Polymethoxylated Diphenylwiethanes. Spectroscopy Letters, 2000, 33, 211-226.	0.5	2
119	8,8′-Dichloro-1,1′,5,5′-tetrahydro-10,10′-bipyrrolo[1,2-b]isoquinoline-3,3′(2H,2′H)-dione. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o1002-o1003.	0.2	2
120	On the structure of compounds obtained from the reaction of amines with 6,6-dimethyl-5,7-dioxaspiro[2.5]octane-4,8-dione. Tetrahedron Letters, 2006, 47, 295-298.	0.7	1
121	Insights on the Chemical Behavior of Ethyl Cyanoformate: Dipolarophile, Cyano or Ethoxycarbonyl Source. ChemistrySelect, 2019, 4, 13724-13730.	0.7	1
122	Carbon dioxide transformation as a green alternative to phosgene and chloroformates: N-carboxyalkylation of lactams and analogues. Journal of CO2 Utilization, 2021, 54, 101782.	3.3	1
123	Mechanism of Formation of a Pinacol Like Dimer. , 2003, , 106.		0