Yu Xin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9430653/publications.pdf

Version: 2024-02-01

372 papers

24,269 citations

84 h-index 135 g-index

382 all docs 382 docs citations

times ranked

382

20938 citing authors

#	Article	IF	CITATIONS
1	Nanoporous Ni(OH) ₂ Thin Film on 3D Ultrathin-Graphite Foam for Asymmetric Supercapacitor. ACS Nano, 2013, 7, 6237-6243.	7.3	1,019
2	Bridging the g-C ₃ N ₄ Interlayers for Enhanced Photocatalysis. ACS Catalysis, 2016, 6, 2462-2472.	5 . 5	869
3	MnO ₂ -based nanostructures for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21380-21423.	5.2	817
4	An Advanced Semimetal–Organic Bi Spheres– <i>g</i> -C ₃ N ₄ Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification. Environmental Science & E	4.6	473
5	Structural Directed Growth of Ultrathin Parallel Birnessite on β-MnO ₂ for High-Performance Asymmetric Supercapacitors. ACS Nano, 2018, 12, 1033-1042.	7.3	436
6	Facile synthesis of hierarchical Co3O4@MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors. Journal of Power Sources, 2014, 252, 98-106.	4.0	354
7	Targeted Synthesis of Unique Nickel Sulfide (NiS, NiS ₂) Microarchitectures and the Applications for the Enhanced Water Splitting System. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2500-2508.	4.0	334
8	Grapheneâ€Encapsulated Si on Ultrathinâ€Graphite Foam as Anode for High Capacity Lithiumâ€ion Batteries. Advanced Materials, 2013, 25, 4673-4677.	11.1	320
9	Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors. Scientific Reports, 2014, 4, 3878.	1.6	285
10	Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study. Chemical Engineering Journal, 2019, 361, 129-138.	6.6	262
11	Progress in aqueous rechargeable batteries. Green Energy and Environment, 2018, 3, 20-41.	4.7	255
12	Ru Single Atoms on N-Doped Carbon by Spatial Confinement and Ionic Substitution Strategies for High-Performance Li–O ₂ Batteries. Journal of the American Chemical Society, 2020, 142, 16776-16786.	6.6	230
13	Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chemical Engineering Journal, 2019, 370, 136-147.	6.6	227
14	Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors. Scientific Reports, 2014, 4, 4518.	1.6	219
15	Bi Cocatalyst/Bi ₂ MoO ₆ Microspheres Nanohybrid with SPR-Promoted Visible-Light Photocatalysis. Journal of Physical Chemistry C, 2016, 120, 11889-11898.	1.5	212
16	Nickel-Manganese Layered Double Hydroxide Nanosheets Supported on Nickel Foam for High-performance Supercapacitor Electrode Materials. Electrochimica Acta, 2016, 194, 179-186.	2.6	208
17	Engineering firecracker-like beta-manganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors. Journal of Power Sources, 2014, 270, 426-433.	4.0	199
18	Encapsulation of zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high-performance rechargeable zinc ion batteries. Journal of Materials Chemistry A, 2017, 5, 23628-23633.	5.2	199

#	Article	IF	Citations
19	Multifunctional Ionic Skin with Sensing, UVâ€Filtering, Waterâ€Retaining, and Antiâ€Freezing Capabilities. Advanced Functional Materials, 2021, 31, 2011176.	7.8	198
20	Bi metal prevents the deactivation of oxygen vacancies in Bi2O2CO3 for stable and efficient photocatalytic NO abatement. Applied Catalysis B: Environmental, 2020, 264, 118545.	10.8	197
21	Unraveling the Mechanisms of Visible Light Photocatalytic NO Purification on Earth-Abundant Insulator-Based Core–Shell Heterojunctions. Environmental Science & Technology, 2018, 52, 1479-1487.	4.6	192
22	Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chemical Communications, 2019, 55, 13773-13776.	2.2	182
23	Photodegradation of Benzoic Acid over Metal-Doped TiO2. Industrial & Engineering Chemistry Research, 2006, 45, 3503-3511.	1.8	173
24	Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@BiOCl nanosheets. Journal of Catalysis, 2016, 344, 401-410.	3.1	172
25	Hierarchical Cu ₂ O/CuO/Co ₃ O ₄ core-shell nanowires: synthesis and electrochemical properties. Nanotechnology, 2015, 26, 304002.	1.3	167
26	Rational design of octahedron and nanowire CeO ₂ @MnO ₂ core–shell heterostructures with outstanding rate capability for asymmetric supercapacitors. Chemical Communications, 2015, 51, 14840-14843.	2.2	160
27	Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. Journal of Power Sources, 2014, 269, 760-767.	4.0	159
28	Promoting ring-opening efficiency for suppressing toxic intermediates during photocatalytic toluene degradation via surface oxygen vacancies. Science Bulletin, 2019, 64, 669-678.	4.3	159
29	Synthesis of MnO2 nanosheets on montmorillonite for oxidative degradation and adsorption of methylene blue. Journal of Colloid and Interface Science, 2018, 510, 207-220.	5.0	158
30	Core/shell design of efficient electrocatalysts based on NiCo ₂ O ₄ nanowires and NiMn LDH nanosheets for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2018, 6, 10243-10252.	5.2	158
31	Highly sensitive and selective acetone sensor based on C-doped WO3 for potential diagnosis of diabetes mellitus. Sensors and Actuators B: Chemical, 2014, 199, 210-219.	4.0	154
32	Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. Journal of Power Sources, 2015, 277, 36-43.	4.0	154
33	Chemical Modifications of Layered Double Hydroxides in the Supercapacitor. Energy and Environmental Materials, 2020, 3, 346-379.	7.3	154
34	Advanced Grapheneâ€Based Binderâ€Free Electrodes for Highâ€Performance Energy Storage. Advanced Materials, 2015, 27, 5264-5279.	11.1	153
35	Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution. ACS Applied Materials & Solution.	4.0	151
36	Morphologically confined hybridization of tiny CoNi2S4 nanosheets into S, P co-doped graphene leading to enhanced pseudocapacitance and rate capability. Chemical Engineering Journal, 2020, 379, 122305.	6.6	148

#	Article	IF	Citations
37	One-pot synthesis of hierarchical MnO2-modified diatomites forÂelectrochemical capacitor electrodes. Journal of Power Sources, 2014, 246, 449-456.	4.0	147
38	Fabrication, modification and application of (BiO)2CO3-based photocatalysts: A review. Applied Surface Science, 2016, 365, 314-335.	3.1	147
39	Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D–2D heterostructures. Chemical Communications, 2015, 51, 8249-8252.	2.2	145
40	Reactant activation and photocatalysis mechanisms on Bi-metal@Bi2GeO5 with oxygen vacancies: A combined experimental and theoretical investigation. Chemical Engineering Journal, 2019, 370, 1366-1375.	6.6	141
41	Tunable design of layered CuCo ₂ O ₄ nanosheets@MnO ₂ nanoflakes core–shell arrays on Ni foam for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21528-21536.	5.2	139
42	Defective Bi4MoO9/Bi metal core/shell heterostructure: Enhanced visible light photocatalysis and reaction mechanism. Applied Catalysis B: Environmental, 2018, 239, 619-627.	10.8	139
43	A multidimensional rational design of nickel–iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors. Journal of Colloid and Interface Science, 2021, 603, 799-809.	5.0	138
44	Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors. CrystEngComm, 2014, 16, 2878-2884.	1.3	135
45	Activation of amorphous bismuth oxide via plasmonic Bi metal for efficient visible-light photocatalysis. Journal of Catalysis, 2017, 352, 102-112.	3.1	135
46	Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the outer/inter-component synergistic effects. Journal of Materials Chemistry A, 2020, 8, 1697-1708.	5.2	135
47	Three dimensional Z-scheme (BiO) 2 CO 3 /MoS 2 with enhanced visible light photocatalytic NO removal. Applied Catalysis B: Environmental, 2016, 199, 87-95.	10.8	133
48	Activity of Transitionâ€Metal (Manganese, Iron, Cobalt, and Nickel) Phosphates for Oxygen Electrocatalysis in Alkaline Solution. ChemCatChem, 2016, 8, 372-379.	1.8	127
49	KCl-mediated dual electronic channels in layered g-C ₃ N ₄ for enhanced visible light photocatalytic NO removal. Nanoscale, 2018, 10, 8066-8074.	2.8	126
50	Construction of unique cupric oxide–manganese dioxide core–shell arrays on a copper grid for high-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 10786-10793.	5.2	125
51	Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 594, 812-823.	5.0	123
52	Mn and Co co-substituted Fe ₃ O ₄ nanoparticles on nitrogen-doped reduced graphene oxide for oxygen electrocatalysis in alkaline solution. Journal of Materials Chemistry A, 2014, 2, 16217-16223.	5.2	118
53	<i>In Situ</i> Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode. ACS Nano, 2015, 9, 8609-8616.	7.3	116
54	Growth of NiMn LDH nanosheet arrays on KCu ₇ S ₄ microwires for hybrid supercapacitors with enhanced electrochemical performance. Journal of Materials Chemistry A, 2017, 5, 20579-20587.	5.2	116

#	Article	IF	CITATIONS
55	2D-2D growth of NiFe LDH nanoflakes on montmorillonite for cationic and anionic dye adsorption performance. Journal of Colloid and Interface Science, 2019, 540, 398-409.	5.0	115
56	Noble metal-free Bi nanoparticles supported on TiO ₂ with plasmon-enhanced visible light photocatalytic air purification. Environmental Science: Nano, 2016, 3, 1306-1317.	2.2	114
57	Tuning the Bifunctional Oxygen Electrocatalytic Properties of Core–Shell Co ₃ O ₄ @NiFe LDH Catalysts for Zn–Air Batteries: Effects of Interfacial Cation Valences. ACS Applied Materials & Interfaces, 2019, 11, 21506-21514.	4.0	114
58	Fabrication of corrosion-resistant superhydrophobic coating on magnesium alloy by one-step electrodeposition method. Journal of Magnesium and Alloys, 2019, 7, 193-202.	5 . 5	114
59	Synthesis of porous NiCoS nanosheets with Al leaching on ordered mesoporous carbon for high-performance supercapacitors. Chemical Engineering Journal, 2020, 384, 123367.	6.6	112
60	Synthesis of Co ₃ O ₄ /SnO ₂ @MnO ₂ core–shell nanostructures for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 12852-12857.	5. 2	111
61	Low-cost high-performance asymmetric supercapacitors based on Co ₂ AlO ₄ @MnO ₂ nanosheets and Fe ₃ O ₄ nanoflakes. Journal of Materials Chemistry A, 2016, 4, 2096-2104.	5.2	111
62	Polypyrrole encapsulation on flower-like porous NiO for advanced high-performance supercapacitors. Chemical Communications, 2015, 51, 7669-7672.	2.2	110
63	Active corrosion protection of super-hydrophobic corrosion inhibitor intercalated Mg–Al layered double hydroxide coating on AZ31 magnesium alloy. Journal of Magnesium and Alloys, 2020, 8, 291-300.	5 . 5	107
64	Synthesis of eosin modified TiO2 film with co-exposed {001} and {101} facets for photocatalytic degradation of para-aminobenzoic acid and solar H2 production. Applied Catalysis B: Environmental, 2020, 265, 118557.	10.8	106
65	MnO ₂ nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 7855-7861.	5.2	105
66	Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles and its pH-mediated tug-of-war with hydrogen evolution. Chemical Engineering Journal, 2018, 348, 26-34.	6.6	104
67	MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance. Journal of Alloys and Compounds, 2019, 802, 259-268.	2.8	104
68	Tunable synthesis of hierarchical NiCo 2 O 4 nanosheets-decorated Cu/CuOx nanowires architectures for asymmetric electrochemical capacitors. Journal of Power Sources, 2015, 283, 270-278.	4.0	101
69	New insights into how Pd nanoparticles influence the photocatalytic oxidation and reduction ability of g-C ₃ N ₄ nanosheets. Catalysis Science and Technology, 2016, 6, 6448-6458.	2.1	101
70	Flower-like SnO2/graphene composite for high-capacity lithium storage. Applied Surface Science, 2012, 258, 4917-4921.	3.1	100
71	Corrosion resistance of fatty acid and fluoroalkylsilane-modified hydrophobic Mg-Al LDH films on anodized magnesium alloy. Applied Surface Science, 2019, 487, 569-580.	3.1	100
72	Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization. Applied Catalysis B: Environmental, 2020, 260, 118130.	10.8	99

#	Article	IF	CITATIONS
73	Optimization of Fe@Ag core–shell nanowires with improved impedance matching and microwave absorption properties. Chemical Engineering Journal, 2022, 430, 132878.	6.6	98
74	Morphology and crystallinity-controlled synthesis of manganese cobalt oxide/manganese dioxides hierarchical nanostructures for high-performance supercapacitors. Journal of Power Sources, 2015, 296, 86-91.	4.0	93
75	A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries. Journal of Materials Chemistry A, 2017, 5, 6424-6431.	5.2	93
76	Co-doped Ni ₃ S ₂ @CNT arrays anchored on graphite foam with a hierarchical conductive network for high-performance supercapacitors and hydrogen evolution electrodes. Journal of Materials Chemistry A, 2018, 6, 10490-10496.	5.2	93
77	Highly enhanced acetone sensing performance of porous C-doped WO 3 hollow spheres by carbon spheres as templates. Sensors and Actuators B: Chemical, 2017, 239, 597-607.	4.0	92
78	Bismuth spheres assembled on graphene oxide: Directional charge transfer enhances plasmonic photocatalysis and in situ DRIFTS studies. Applied Catalysis B: Environmental, 2018, 221, 482-489.	10.8	92
79	Hierarchical NiO nanoflake coated CuO flower core–shell nanostructures for supercapacitor. Ceramics International, 2014, 40, 5533-5538.	2.3	91
80	Template synthesis of carbon self-doped g-C ₃ N ₄ with enhanced visible to near-infrared absorption and photocatalytic performance. RSC Advances, 2015, 5, 39549-39556.	1.7	91
81	Phase and morphology evolution of CoAl LDH nanosheets towards advanced supercapacitor applications. CrystEngComm, 2019, 21, 4934-4942.	1.3	91
82	Engineering of three dimensional (3-D) diatom@TiO2@MnO2 composites with enhanced supercapacitor performance. Electrochimica Acta, 2016, 190, 159-167.	2.6	89
83	Plasmonic Bi metal as cocatalyst and photocatalyst: The case of Bi/(BiO) 2 CO 3 and Bi particles. Journal of Colloid and Interface Science, 2017, 485, 1-10.	5.0	89
84	Morphology-controlled MnO ₂ modified silicon diatoms for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 10856-10865.	5.2	88
85	An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure. Electrochimica Acta, 2018, 259, 225-232.	2.6	87
86	Evaluation of MnO2-templated iron oxide-coated diatomites for their catalytic performance in heterogeneous photo Fenton-like system. Journal of Hazardous Materials, 2018, 344, 230-240.	6.5	87
87	Acid-salt treated CoAl layered double hydroxide nanosheets with enhanced adsorption capacity of methyl orange dye. Journal of Colloid and Interface Science, 2019, 548, 100-109.	5.0	86
88	Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes. Electrochimica Acta, 2015, 152, 172-177.	2.6	85
89	Atomic scale modulation strategies and crystal phase transition of flower-like CoAl layered double hydroxides for supercapacitors. CrystEngComm, 2022, 24, 2081-2088.	1.3	85
90	The importance of intermediates ring-opening in preventing photocatalyst deactivation during toluene decomposition. Applied Catalysis B: Environmental, 2020, 272, 118977.	10.8	84

#	Article	IF	Citations
91	Diatom silica, an emerging biomaterial for energy conversion and storage. Journal of Materials Chemistry A, 2017, 5, 8847-8859.	5.2	82
92	Flexible electrochemical energy storage: The role of composite materials. Composites Science and Technology, 2020, 192, 108102.	3.8	82
93	Fabrication of CuO nanosheets-built microtubes via Kirkendall effect for non-enzymatic glucose sensor. Applied Surface Science, 2019, 494, 484-491.	3.1	80
94	P-Doped NiMoO ₄ parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 19589-19596.	5.2	79
95	Synergistic integration of metallic Bi and defects on BiOI: Enhanced photocatalytic NO removal and conversion pathway. Chinese Journal of Catalysis, 2019, 40, 826-836.	6.9	78
96	Engineering Ultrathin Co(OH) ₂ Nanosheets on Dandelion–like CuCo ₂ O ₄ Microspheres for Binderâ€Free Supercapacitors. ChemElectroChem, 2017, 4, 721-727.	1.7	77
97	Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Scientific Reports, 2017, 7, 44562.	1.6	76
98	Construction of vertically aligned PPy nanosheets networks anchored on MnCo2O4 nanobelts for high-performance asymmetric supercapacitor. Journal of Power Sources, 2018, 393, 169-176.	4.0	76
99	Low temperature and fast response hydrogen gas sensor with Pd coated SnO2 nanofiber rods. International Journal of Hydrogen Energy, 2020, 45, 7234-7242.	3.8	76
100	Surface oxygen-vacancy induced photocatalytic activity of La(OH) < sub > 3 < /sub > nanorods prepared by a fast and scalable method. Physical Chemistry Chemical Physics, 2015, 17, 16058-16066.	1.3	75
101	Highly enhanced visible-light photocatalytic NO x purification and conversion pathway on self-structurally modified g-C 3 N 4 nanosheets. Science Bulletin, 2018, 63, 609-620.	4.3	72
102	Direct Imaging of Isolated Single-Molecule Magnets in Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 2997-3005.	6.6	71
103	The pseudocapacitance mechanism of graphene/CoAl LDH and its derivatives: Are all the modifications beneficial?. Journal of Energy Chemistry, 2021, 52, 218-227.	7.1	71
104	Crystal morphology evolution of Ni–Co layered double hydroxide nanostructure towards high-performance biotemplate asymmetric supercapacitors. CrystEngComm, 2018, 20, 7428-7434.	1.3	70
105	One-step hydrothermal synthesis of hierarchical MnO2-coated CuO flower-like nanostructures with enhanced electrochemical properties for supercapacitor. Materials Letters, 2013, 112, 203-206.	1.3	69
106	Facile preparation and sulfidation analysis for activated multiporous carbon@NiCo2S4 nanostructure with enhanced supercapacitive properties. Electrochimica Acta, 2016, 211, 627-635.	2.6	69
107	Tuning the reaction pathway of photocatalytic NO oxidation process to control the secondary pollution on monodisperse Au nanoparticles@g-C3N4. Chemical Engineering Journal, 2019, 378, 122184.	6.6	68
108	Growth of cobalt-aluminum layered double hydroxide nanosheets on graphene oxide towards high performance supercapacitors: The important role of layer structure. Applied Surface Science, 2019, 496, 143700.	3.1	68

#	Article	IF	Citations
109	Crystal structure of nickel manganese-layered double hydroxide@cobaltosic oxides on nickel foam towards high-performance supercapacitors. CrystEngComm, 2019, 21, 470-477.	1.3	68
110	Solvent-assisted synthesis of porous g-C 3 N 4 with efficient visible-light photocatalytic performance for NO removal. Chinese Journal of Catalysis, 2017, 38, 372-378.	6.9	67
111	pH-Dependent Degradation of Methylene Blue via Rational-Designed MnO ₂ Nanosheet-Decorated Diatomites. Industrial & Engineering Chemistry Research, 2014, 53, 6966-6977.	1.8	65
112	Achieving high energy density in a $4.5\mathrm{V}$ all nitrogen-doped graphene based lithium-ion capacitor. Journal of Materials Chemistry A, 2019, 7, 19909-19921.	5. 2	65
113	Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets. Chinese Journal of Catalysis, 2019, 40, 620-630.	6.9	65
114	Preparation of Porous Graphene@Mn ₃ O ₄ and Its Application in the Oxygen Reduction Reaction and Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 831-837.	3.2	65
115	Preparation, characterization and dye adsorption of Au nanoparticles/ZnAl layered double oxides nanocomposites. Applied Surface Science, 2013, 283, 505-512.	3.1	64
116	Single Precursor Mediated-Synthesis of Bi Semimetal Deposited N-Doped (BiO) ₂ CO ₃ Superstructures for Highly Promoted Photocatalysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 2969-2979.	3.2	64
117	Au/Metal–Organic Framework Nanocapsules for Electrochemical Determination of Glutathione. ACS Applied Nano Materials, 2021, 4, 4853-4862.	2.4	64
118	Biotemplate derived three dimensional nitrogen doped graphene@MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. Journal of Colloid and Interface Science, 2019, 544, 155-163.	5.0	63
119	Electrostatic adsorbing graphene quantum dot into nickel–based layered double hydroxides: Electron absorption/donor effects enhanced oxygen electrocatalytic activity. Nano Energy, 2021, 84, 105932.	8.2	63
120	Facile synthesis of carbon-doped graphitic C ₃ N ₄ @MnO ₂ with enhanced electrochemical performance. RSC Advances, 2016, 6, 83209-83216.	1.7	62
121	Light-Induced Generation and Regeneration of Oxygen Vacancies in BiSbO ₄ for Sustainable Visible Light Photocatalysis. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47984-47991.	4.0	61
122	Birnessite based nanostructures for supercapacitors: challenges, strategies and prospects. Nanoscale Advances, 2020, 2, 37-54.	2.2	61
123	Engineering active sites on nitrogen-doped carbon nanotubes/cobaltosic oxide heterostructure embedded in biotemplate for high-performance supercapacitors. Journal of Energy Storage, 2022, 53, 105094.	3.9	61
124	Mesoporous CuO–NiO micropolyhedrons: facile synthesis, morphological evolution and pseudocapcitive performance. CrystEngComm, 2014, 16, 492-498.	1.3	60
125	Graphene Oxide Enabled Flexible PEO-Based Solid Polymer Electrolyte for All-Solid-State Lithium Metal Battery. ACS Applied Energy Materials, 2021, 4, 3660-3669.	2.5	59
126	Methanolysis of ammonia borane by shape-controlled mesoporous copper nanostructures for hydrogen generation. Dalton Transactions, 2015, 44, 1070-1076.	1.6	58

#	Article	IF	Citations
127	Carbonate-intercalated defective bismuth tungstate for efficiently photocatalytic NO removal and promotion mechanism study. Applied Catalysis B: Environmental, 2019, 254, 206-213.	10.8	58
128	Rational Design of Porous MnO2 Tubular Arrays via Facile and Templated Method for High Performance Supercapacitors. Electrochimica Acta, 2015, 154, 329-337.	2.6	56
129	An anion-exchange strategy for 3D hierarchical (BiO) ₂ CO ₃ /amorphous Bi ₂ S ₃ heterostructures with increased solar absorption and enhanced visible light photocatalysis. RSC Advances, 2015, 5, 11714-11723.	1.7	56
130	Few-Layered Trigonal WS ₂ Nanosheet-Coated Graphite Foam as an Efficient Free-Standing Electrode for a Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30591-30598.	4.0	56
131	Facile synthesis of Bi12O17Br2 and Bi4O5Br2 nanosheets: In situ DRIFTS investigation of photocatalytic NO oxidation conversion pathway. Chinese Journal of Catalysis, 2017, 38, 2030-2038.	6.9	56
132	The Role of Mineral Acid Doping of PEDOT:PSS and Its Application in Organic Photovoltaics. Advanced Electronic Materials, 2020, 6, 1900648.	2.6	56
133	Flower-like MnO2 decorated activated multihole carbon as high-performance asymmetric supercapacitor electrodes. Materials Letters, 2014, 135, 11-14.	1.3	55
134	Self-supporting Co3O4/Graphene Hybrid Films as Binder-free Anode Materials for Lithium Ion Batteries. Scientific Reports, 2018, 8, 3182.	1.6	55
135	Origin of the electrocatalytic oxygen evolution activity of nickel phosphides: in-situ electrochemical oxidation and Cr doping to achieve high performance. Science Bulletin, 2021, 66, 708-719.	4.3	55
136	Rational design of hierarchically porous birnessite-type manganese dioxides nanosheets on different one-dimensional titania-based nanowires for high performance supercapacitors. Journal of Power Sources, 2014, 270, 675-683.	4.0	54
137	Ternary Ag/AgCl/BiOIO3 composites for enhanced visible-light-driven photocatalysis. Chinese Journal of Catalysis, 2015, 36, 2155-2163.	6.9	54
138	Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors. Journal of Power Sources, 2015, 278, 555-561.	4.0	54
139	On-chip 3D interdigital micro-supercapacitors with ultrahigh areal energy density. Energy Storage Materials, 2020, 27, 17-24.	9.5	54
140	Tailoring Kirkendall Effect of the KCu7S4 Microwires towards CuO@MnO2 Core-Shell Nanostructures for Supercapacitors. Electrochimica Acta, 2015, 174, 87-92.	2.6	53
141	Rational design of microsphere and microcube MnCO 3 @MnO 2 heterostructures for supercapacitor electrodes. Journal of Power Sources, 2017, 353, 202-209.	4.0	53
142	Morphology Dependent Supercapacitance of Nanostructured NiCo 2 O 4 on Graphitic Carbon Nitride. Electrochimica Acta, 2016, 200, 239-246.	2.6	51
143	Engineering hierarchical Diatom@CuO@MnO2 hybrid for high performance supercapacitor. Applied Surface Science, 2018, 427, 1158-1165.	3.1	51
144	Engineering birnessite-type MnO2 nanosheets on fiberglass for pH-dependent degradation of methylene blue. Journal of Physics and Chemistry of Solids, 2015, 83, 40-46.	1.9	50

#	Article	IF	CITATIONS
145	The interfacial mechanical properties of functionalized graphene–polymer nanocomposites. RSC Advances, 2016, 6, 66658-66664.	1.7	50
146	Flower-like NiFe layered double hydroxides coated MnO2 for high-performance flexible supercapacitors. Journal of Energy Storage, 2017, 11, 242-248.	3.9	50
147	Magnetically Controllable Liquid Metal Marbles. Advanced Materials Interfaces, 2019, 6, 1901057.	1.9	50
148	Facile synthesis of CoAl-LDH/MnO2 hierarchical nanocomposites for high-performance supercapacitors. Ceramics International, 2014, 40, 2115-2120.	2.3	49
149	Mesoporous Ni-Doped \hat{l} -Bi ₂ O ₃ Microspheres for Enhanced Solar-Driven Photocatalysis: A Combined Experimental and Theoretical Investigation. Journal of Physical Chemistry C, 2017, 121, 9394-9401.	1.5	49
150	Double-shell Fe2O3 hollow box-like structure for enhanced photo-Fenton degradation of malachite green dye. Journal of Physics and Chemistry of Solids, 2018, 112, 209-215.	1.9	49
151	Facet-dependent photocatalytic NO conversion pathways predetermined by adsorption activation patterns. Nanoscale, 2019, 11, 2366-2373.	2.8	49
152	Synergistic effect of manganese dioxide and diatomite for fast decolorization and high removal capacity of methyl orange. Journal of Colloid and Interface Science, 2016, 484, 1-9.	5.0	48
153	Efficient visible light photocatalytic NOx removal with cationic Ag clusters-grafted (BiO)2CO3 hierarchical superstructures. Journal of Hazardous Materials, 2017, 322, 223-232.	6.5	48
154	Exploring the photocatalysis mechanism on insulators. Applied Catalysis B: Environmental, 2017, 219, 450-458.	10.8	48
155	One-pot controllable synthesis of flower-like CoFe2O4/FeOOH nanocomposites for high-performance supercapacitors. Materials Letters, 2014, 123, 229-234.	1.3	47
156	Facile synthesis of Co3O4@NiCo2O4 core–shell arrays on Ni foam for advanced binder-free supercapacitor electrodes. Ceramics International, 2014, 40, 15641-15646.	2.3	46
157	Facile Synthesis of Flower-like (BiO)2CO3@MnO2 and Bi2O3@MnO2 Nanocomposites for Supercapacitors. Electrochimica Acta, 2015, 168, 97-103.	2.6	46
158	Merging of memory effect and anion intercalation: MnO _x -decorated MgAl-LDO as a high-performance nano-adsorbent for the removal of methyl orange. Dalton Transactions, 2016, 45, 10530-10538.	1.6	46
159	Improving ionic/electronic conductivity of MoS2 Li-ion anode via manganese doping and structural optimization. Chemical Engineering Journal, 2019, 372, 665-672.	6.6	46
160	Surface Lattice Oxygen Activation on Sr ₂ Sb ₂ O ₇ Enhances the Photocatalytic Mineralization of Toluene: from Reactant Activation, Intermediate Conversion to Product Desorption. ACS Applied Materials & Desorption and Samp; Interfaces, 2021, 13, 5153-5164.	4.0	46
161	The design of Co3S4@MXene heterostructure as sulfur host to promote the electrochemical kinetics for reversible magnesium-sulfur batteries. Journal of Magnesium and Alloys, 2021, 9, 78-89.	5.5	46
162	Morphology-controlled MnO ₂ â€"graphene oxideâ€"diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors. Dalton Transactions, 2016, 45, 936-942.	1.6	45

#	Article	IF	Citations
163	Hydroxyapatite Nanowire-Reinforced Poly(ethylene oxide)-Based Polymer Solid Electrolyte for Application in High-Temperature Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54637-54643.	4.0	45
164	Formation of a hydrophobic and corrosion resistant coating on magnesium alloy via a one-step hydrothermal method. Journal of Colloid and Interface Science, 2017, 505, 87-95.	5.0	44
165	Quasi-parallel arrays with a 2D-on-2D structure for electrochemical supercapacitors. Journal of Materials Chemistry A, 2018, 6, 24717-24727.	5.2	44
166	Rational Design of Layered SnS2 on Ultralight Graphene Fiber Fabrics as Binder-Free Anodes for Enhanced Practical Capacity of Sodium-Ion Batteries. Nano-Micro Letters, 2019, 11, 66.	14.4	44
167	Rational synthesis of hybrid NiCo2S4@MnO2 heterostructures for supercapacitor electrodes. Ceramics International, 2016, 42, 8909-8914.	2.3	43
168	New insights into filamentous sludge bulking: The potential role of extracellular polymeric substances in sludge bulking in the activated sludge process. Chemosphere, 2020, 248, 126012.	4.2	43
169	Enhanced plasmonic photocatalysis by SiO 2 @Bi microspheres with hot-electron transportation channels via Bi–O–Si linkages. Chinese Journal of Catalysis, 2017, 38, 1174-1183.	6.9	42
170	A bifunctional oxygen electrocatalyst from monodisperse MnCo ₂ O ₄ nanoparticles on nitrogen enriched carbon nanofibers. RSC Advances, 2014, 4, 25089-25092.	1.7	41
171	MnO2@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors. Materials Research Bulletin, 2014, 49, 448-453.	2.7	41
172	Liquid-Solid-Solution Assembly of CoFe 2 O 4 / Graphene Nanocomposite as a High-Performance Lithium-lon Battery Anode. Electrochimica Acta, 2016, 215, 247-252.	2.6	41
173	Simultaneous introduction of oxygen vacancies and Bi metal onto the {001} facet of Bi ₃ O ₄ Cl woven nanobelts for synergistically enhanced photocatalysis. Nanoscale, 2018, 10, 16928-16934.	2.8	41
174	Morphology-controlled synthesis of CoMoO ₄ nanoarchitectures anchored on carbon cloth for high-efficiency oxygen oxidation reaction. RSC Advances, 2019, 9, 1562-1569.	1.7	41
175	Covalency Competition Induced Active Octahedral Sites in Spinel Cobaltites for Enhanced Pseudocapacitive Charge Storage. Advanced Energy Materials, 2022, 12, 2102053.	10.2	41
176	Gold Sponges Prepared via Hydrothermally Activated Self-Assembly of Au Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 6970-6975.	1.5	40
177	Gold(I)–Alkanethiolate Nanotubes. Advanced Materials, 2009, 21, 4962-4965.	11.1	40
178	MnO2-directed synthesis of NiFe-LDH@FeOOH nanosheeet arrays for supercapacitor negative electrode. Chinese Chemical Letters, 2020, 31, 2343-2346.	4.8	40
179	Tungsten oxide-based nanomaterials for supercapacitors: Mechanism, fabrication, characterization, multifunctionality, and electrochemical performance. Progress in Materials Science, 2022, 130, 100978.	16.0	40
180	CoO/rGO composite prepared by a facile direct-flame approach for high-power supercapacitors. Ceramics International, 2018, 44, 16900-16907.	2.3	39

#	Article	IF	Citations
181	One-step hydrothermal synthesis of Cu-doped MnO2 coated diatomite for degradation of methylene blue in Fenton-like system. Journal of Colloid and Interface Science, 2019, 556, 466-475.	5.0	39
182	MnO2@NiO nanosheets@nanowires hierarchical structures with enhanced supercapacitive properties. Journal of Materials Science, 2020, 55, 2482-2491.	1.7	39
183	Facile construction of Bi2Mo3O12@Bi2O2CO3 heterojunctions for enhanced photocatalytic efficiency toward NO removal and study of the conversion process. Chinese Journal of Catalysis, 2020, 41, 268-275.	6.9	39
184	Interfacial activation of reactants and intermediates on CaSO4 insulator-based heterostructure for efficient photocatalytic NO removal. Chemical Engineering Journal, 2020, 390, 124609.	6.6	39
185	Template-free and large-scale synthesis of hierarchical dandelion-like NiCo2O4 microspheres for high-performance supercapacitors. Ceramics International, 2014, 40, 10005-10011.	2.3	38
186	Carbon cloth@T-Nb2O5@MnO2: A rational exploration of manganese oxide for high performance supercapacitor. Electrochimica Acta, 2017, 253, 311-318.	2.6	38
187	Controllable synthesis of MnO ₂ nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor. CrystEngComm, 2018, 20, 1690-1697.	1.3	38
188	Core–Shell Structured Magnetic γ-Fe ₂ O ₃ @PANI Nanocomposites for Enhanced As(V) Adsorption. Industrial & Engineering Chemistry Research, 2020, 59, 7554-7563.	1.8	38
189	Mechanistic understanding of ternary Ag/AgCl@La(OH) ₃ nanorods as novel visible light plasmonic photocatalysts. Catalysis Science and Technology, 2016, 6, 5003-5010.	2.1	37
190	Calcium Sulfate Hemihydrate Nanowires: One Robust Material in Separation of Water from Water-in-Oil Emulsion. Environmental Science & Environmental Sc	4.6	37
191	Graphene oxide mediated co-generation of C-doping and oxygen defects in Bi ₂ WO ₆ nanosheets: a combined DRIFTS and DFT investigation. Nanoscale, 2019, 11, 20562-20570.	2.8	37
192	Plasma-Induced Defect Engineering and Cation Refilling of NiMoO ₄ Parallel Arrays for Overall Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41545-41554.	4.0	36
193	Low Carbonate Contaminative and Ultrasmall NiAl LDH Prepared by Acid Salt Treatment with High Adsorption Capacity of Methyl Orange. Industrial & Engineering Chemistry Research, 2019, 58, 11985-11998.	1.8	35
194	Functionalized 12µm Polyethylene Separator to Realize Dendriteâ€Free Lithium Deposition toward Highly Stable Lithiumâ€Metal Batteries. Advanced Science, 2022, 9, e2102215.	5.6	35
195	Controlled deposition of Au on (BiO) ₂ CO ₃ microspheres: the size and content of Au nanoparticles matter. Dalton Transactions, 2015, 44, 8805-8811.	1.6	34
196	Decoration of carbon cloth by manganese oxides for flexible asymmetric supercapacitors. Ceramics International, 2017, 43, 8321-8328.	2.3	34
197	Nanocarbonâ€Based Electrocatalysts for Rechargeable Aqueous Li/Znâ€Air Batteries. ChemElectroChem, 2018, 5, 1745-1763.	1.7	34
198	Hierarchical copper/nickel-based manganese dioxide core-shell nanostructure for supercapacitor electrodes. Electrochimica Acta, 2016, 212, 671-677.	2.6	33

#	Article	IF	Citations
199	Hierarchical Nickel Cobaltate/Manganese Dioxide Coreâ€Shell Nanowire Arrays on Grapheneâ€Decorated Nickel Foam for Highâ€Performance Supercapacitors. ChemElectroChem, 2017, 4, 2414-2422.	1.7	33
200	PPy@NiCo2S4 nanosheets anchored on graphite foam with bicontinuous conductive network for high-areal capacitance and high-rate electrodes. Journal of Alloys and Compounds, 2018, 747, 276-282.	2.8	33
201	Freeze-drying induced self-assembly approach for scalable constructing MoS2/graphene hybrid aerogels for lithium-ion batteries. Journal of Colloid and Interface Science, 2019, 544, 37-45.	5.0	33
202	Uniform growth of NiCo2S4 nanoflakes arrays on nickel foam for binder-free high-performance supercapacitors. Journal of Materials Science, 2019, 54, 4821-4830.	1.7	33
203	In-situ fabricating MnO2 and its derived FeOOH nanostructures on mesoporous carbon towards high-performance asymmetric supercapacitor. Applied Surface Science, 2020, 503, 144123.	3.1	33
204	Biotemplate Synthesis of Fe3O4/Polyaniline for Supercapacitor. Journal of Energy Storage, 2020, 30, 101554.	3.9	33
205	MnO _x -modified ZnAl-LDOs as high-performance adsorbent for the removal of methyl orange. Dalton Transactions, 2014, 43, 6667-6676.	1.6	32
206	Heterojunction interface of zinc oxide and zinc sulfide promoting reactive molecules activation and carrier separation toward efficient photocatalysis. Journal of Colloid and Interface Science, 2021, 588, 826-837.	5.0	32
207	Enhanced Photocatalytic VOCs Mineralization via Special Ga-O-H Charge Transfer Channel in α-Ga ₂ O ₃ /MgAl-LDH Heterojunction. ACS ES&T Engineering, 2021, 1, 501-511.	3.7	32
208	Hierarchical NiO moss decorated diatomites via facile and templated method for high performance supercapacitors. Materials Letters, 2014, 120, 263-266.	1.3	31
209	Graphene/Graphitized Polydopamine/Carbon Nanotube All-Carbon Ternary Composite Films with Improved Mechanical Properties and Through-Plane Thermal Conductivity. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 57391-57400.	4.0	31
210	A Critical Review on Nanowireâ€Motors: Design, Mechanism and Applications. Chemical Record, 2022, 22,	2.9	31
211	SnO2 nanorods grown on graphite as a high-capacity anode material for lithium ion batteries. Ceramics International, 2012, 38, 5145-5149.	2.3	30
212	One-pot synthesis of vanadium dioxide nanoflowers on graphene oxide. Ceramics International, 2016, 42, 7883-7887.	2.3	30
213	Delta manganese dioxide nanosheets decorated magnesium wire for the degradation of methyl orange. Journal of Colloid and Interface Science, 2017, 490, 226-232.	5.0	30
214	Low-Charge-Carrier-Scattering Three-Dimensional $\hat{l}\pm$ -MnO $<$ sub $>2sub>\hat{l}^2-MnO<sub>2sub> Networks for Ultra-High-Rate Asymmetrical Supercapacitors. ACS Applied Energy Materials, 2019, 2, 1051-1059.$	2.5	30
215	Template-Free Parallel One-Dimensional Assembly of Gold Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 16812-16815.	1.2	29
216	Monodispersed plum candy-like MnO 2 nanosheets-decorated NiO nanostructures for supercapacitors. Ceramics International, 2016, 42, 7787-7792.	2.3	29

#	Article	IF	CITATIONS
217	P-doped cobalt carbonate hydroxide@NiMoO4 double-shelled hierarchical nanoarrays anchored on nickel foam as a bi-functional electrode for energy storage and conversion. Journal of Colloid and Interface Science, 2021, 587, 855-863.	5.0	29
218	Surfactant-Mediated Self-Assembly of Au Nanoparticles and Their Related Conversion to Complex Mesoporous Structures. Langmuir, 2008, 24, 3740-3746.	1.6	28
219	Facile synthesis of carbon sphere@Ni(OH) ₂ and derivatives for high-performance supercapacitors. Functional Materials Letters, 2016, 09, 1642002.	0.7	28
220	MgAl layered double oxide: One powerful sweeper of emulsified water and acid for oil purification. Journal of Hazardous Materials, 2019, 367, 658-667.	6.5	28
221	An atomic insight into BiOBr/La ₂ Ti ₂ O ₇ p–n heterojunctions: interfacial charge transfer pathway and photocatalysis mechanism. Catalysis Science and Technology, 2020, 10, 826-834.	2.1	28
222	Motivated surface reaction thermodynamics on the bismuth oxyhalides with lattice strain for enhanced photocatalytic NO oxidation. Applied Catalysis B: Environmental, 2021, 284, 119694.	10.8	28
223	Sculpturing the Core towards Mesoporous Manganese Dioxides Nanosheets-Built Nanotubes for Pseudocapacitance. Electrochimica Acta, 2016, 187, 488-495.	2.6	27
224	Inhibition of the toxic byproduct during photocatalytic NO oxidation via La doping in ZnO. Chinese Chemical Letters, 2020, 31, 751-754.	4.8	27
225	Lightâ€Induced Dynamic Stability of Oxygen Vacancies in BiSbO ₄ for Efficient Photocatalytic Formaldehyde Degradation. Energy and Environmental Materials, 2022, 5, 305-312.	7.3	27
226	Morphology and crystallinity-controlled synthesis of etched CoAl LDO/MnO2 hybrid nanoarrays towards high performance supercapacitors. Journal of Alloys and Compounds, 2019, 806, 917-925.	2.8	26
227	Facile Synthesis of Manganese Cobalt Oxide/Nickel Cobalt Oxide Composites for High-Performance Supercapacitors. Frontiers in Chemistry, 2018, 6, 661.	1.8	26
228	Structural evolution and sulfuration of nickel cobalt hydroxides from 2D to 1D on 3D diatomite for supercapacitors. CrystEngComm, 2021, 23, 5636-5644.	1.3	26
229	In situ growth of Au nanoparticles on 3D Bi ₂ O ₂ CO ₃ for surface plasmon enhanced visible light photocatalysis. New Journal of Chemistry, 2015, 39, 8446-8453.	1.4	25
230	Na-rich layered Na2Ti1â^'xCrxO3â^'x/2 (x = 0, 0.06): Na-ion battery cathode materials with high capacity long cycle life. Scientific Reports, 2017, 7, 373.	and 1.6	25
231	Etching and anti-etching strategy for sensitive colorimetric sensing of H2O2 and biothiols based on silver/carbon nanomaterial. Colloids and Surfaces B: Biointerfaces, 2018, 162, 118-125.	2.5	25
232	Hydrogen peroxide sensing in body fluids and tumor cells via in situ produced redox couples on two-dimensional holey CuCo2O4 nanosheets. Mikrochimica Acta, 2020, 187, 469.	2.5	25
233	An urchin-like graphite-based anode material for lithium ion batteries. Electrochimica Acta, 2010, 55, 5519-5522.	2.6	24
234	Birnessite MnO2-decorated hollow dandelion-like CuO architectures for supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2015, 26, 4212-4220.	1.1	24

#	Article	IF	Citations
235	Facile synthesis of in situ phosphorus-doped g-C ₃ N ₄ with enhanced visible light photocatalytic property for NO purification. RSC Advances, 2016, 6, 88085-88089.	1.7	24
236	One-pot synthesis of \hat{i} -Fe2O3 nanospheres/diatomite composites for electrochemical capacitor electrodes. Materials Letters, 2018, 215, 23-26.	1.3	24
237	Lotus-Seedpod-Bioinspired 3D Superhydrophobic Diatomite Porous Ceramics Comodified by Graphene and Carbon Nanobelts. ACS Applied Materials & Early; Interfaces, 2018, 10, 27416-27423.	4.0	24
238	Carbonate doped Bi2MoO6 hierarchical nanostructure with enhanced transformation of active radicals for efficient photocatalytic removal of NO. Journal of Colloid and Interface Science, 2019, 557, 816-824.	5.0	24
239	Electron buffer formation through coupling thiosulfate-dependent denitratation with anammox in a single-stage sequencing batch reactor. Bioresource Technology, 2020, 312, 123560.	4.8	24
240	MESOSCALE SPHERICAL AND PLANAR ORGANIZATIONS OF GOLD NANOPARTICLES. Functional Materials Letters, 2008, 01, 43-53.	0.7	23
241	In situ DRIFT investigation on the photocatalytic NO oxidation mechanism with thermally exfoliated porous g-C ₃ N ₄ nanosheets. RSC Advances, 2017, 7, 19280-19287.	1.7	23
242	Roles of Alkaline Earth Ions in Garnetâ€Type Superionic Conductors. ChemElectroChem, 2017, 4, 266-271.	1.7	23
243	Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage. CrystEngComm, 2019, 21, 5322-5331.	1.3	23
244	A novel high-sensitivity non-enzymatic glucose sensor via Cu2O@CuO@NiCo2O4 nanowires as catalyst. Materials Letters, 2020, 272, 127850.	1.3	23
245	Self-Assembled Au/TiO ₂ /CNTs Ternary Nanocomposites for Photocatalytic Applications. Science of Advanced Materials, 2010, 2, 503-513.	0.1	23
246	Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors. Scientific Reports, 2018, 8, 4478.	1.6	22
247	Design and fabrication of hydrotalcite-like ternary NiMgAl layered double hydroxide nanosheets as battery-type electrodes for high-performance supercapacitors. RSC Advances, 2019, 9, 9604-9612.	1.7	22
248	Controllable crystal growth of a NiCo-LDH nanostructure anchored onto KCu ₇ S ₄ nanowires <i>via</i> a facile solvothermal method for supercapacitor application. CrystEngComm, 2020, 22, 1602-1609.	1.3	22
249	Montmorillonite-Based Two-Dimensional Nanocomposites: Preparation and Applications. Molecules, 2021, 26, 2521.	1.7	22
250	Engineering one-dimensional and two-dimensional birnessite manganese dioxides on nickel foam-supported cobalt–aluminum layered double hydroxides for advanced binder-free supercapacitors. RSC Advances, 2014, 4, 63901-63908.	1.7	21
251	Electronic Coupling of Cobalt Nanoparticles to Nitrogenâ€Doped Graphene for Oxygen Reduction and Evolution Reactions. ChemSusChem, 2016, 9, 3067-3073.	3.6	21
252	One-pot synthesis of pearl-chain-like manganese dioxide-decorated titanium grids as advanced binder-free supercapacitors electrodes. Ceramics International, 2016, 42, 9227-9233.	2.3	21

#	Article	IF	Citations
253	Simultaneous Pd2+ doping and Pd metal deposition on (BiO)2CO3 microspheres for enhanced and stable visible light photocatalysis. Applied Catalysis A: General, 2016, 510, 161-170.	2.2	21
254	Highly-Efficient Dendritic Cable Electrodes for Flexible Supercapacitive Fabric. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 40207-40214.	4.0	21
255	Enhanced rate capability of a lithium ion battery anode based on liquid–solid-solution assembly of Fe ₂ O ₃ on crumpled graphene. RSC Advances, 2016, 6, 9007-9012.	1.7	20
256	High-surface energy enables efficient and stable photocatalytic toluene degradation <i>via</i> the suppression of intermediate byproducts. Catalysis Science and Technology, 2019, 9, 2952-2959.	2.1	20
257	Magnetic nickel chrysotile nanotubes tethered with pH-sensitive poly(methacrylic acid) brushes for Cu(II) adsorption. Journal of Molecular Liquids, 2019, 276, 611-623.	2.3	20
258	Structure and diversity of fungal communities in long-term copper-contaminated agricultural soil. Science of the Total Environment, 2022, 806, 151302.	3.9	20
259	Insights into the role of metal cation substitution on the anionic dye removal performance of CoAl-LDH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128139.	2.3	20
260	Facile biphasic synthesis of TiO2–MnO2 nanocomposites for photocatalysis. Ceramics International, 2016, 42, 19425-19428.	2.3	19
261	(NH ₄) ₂ SO ₄ -assisted polycondensation of dicyandiamide for porous g-C ₃ N ₄ with enhanced photocatalytic NO removal. RSC Advances, 2016, 6, 96334-96338.	1.7	19
262	Catalytic activities of dissolved and Sch-immobilized Mo in H2O2 decomposition: Implications for phenol oxidation under acidic conditions. Applied Catalysis B: Environmental, 2016, 185, 371-377.	10.8	19
263	Manganese dioxide anchored on hierarchical carbon nanotubes/graphene/diatomite conductive architecture for high performance asymmetric supercapacitor. Applied Surface Science, 2020, 508, 144777.	3.1	19
264	The toxicity of hexavalent chromium to soil microbial processes concerning soil properties and aging time. Environmental Research, 2022, 204, 111941.	3.7	19
265	2D–3D graphene-coated diatomite as a support toward growing ZnO for advanced photocatalytic degradation of methylene blue. RSC Advances, 2021, 11, 38505-38514.	1.7	19
266	Self-assembled spongy-like MnO2 electrode materials for supercapacitors. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 45, 103-108.	1.3	18
267	Facile decolorization of methylene blue by morphology-dependence Î-MnO2 nanosheets -modified diatomite. Journal of Physics and Chemistry of Solids, 2015, 87, 196-202.	1.9	18
268	An unusual low-surface-area nitrogen doped carbon for ultrahigh gravimetric and volumetric capacitances. Journal of Materials Chemistry A, 2018, 6, 8868-8873.	5.2	18
269	Core–shell (nano-SnX/nano-Li ₄ Ti ₅ O ₁₂)@C spheres (X = Se,Te) with high volumetric capacity and excellent cycle stability for lithium-ion batteries. Nanoscale, 2019, 11, 23268-23274.	2.8	18
270	Design of Nb2O5/graphene hybrid aerogel as polymer binder-free electrodes for lithium-ion capacitors. Materials Technology, 2020, 35, 625-634.	1.5	18

#	Article	IF	Citations
271	Two-dimensional molybdenum carbide (MXene) as an efficient nanoadditive for achieving superlubricity under ultrahigh pressure. Friction, 2023, 11, 369-382.	3.4	18
272	Binder-free supercapacitive of ultrathin Co(OH) ₂ nanosheets-decorated nitrogen-doped carbon nanotubes core-shell nanostructures. Materials Technology, 2016, 31, 521-525.	1.5	17
273	Facile synthesis of three-dimensional diatomite/manganese silicate nanosheet composites for enhanced Fenton-like catalytic degradation of malachite green dye. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	17
274	Lightweight, Low-Cost Co2SiO4@diatomite Core-Shell Composite Material for High-Efficiency Microwave Absorption. Molecules, 2022, 27, 1055.	1.7	17
275	Recent Progress in Iron-Based Microwave Absorbing Composites: A Review and Prospective. Molecules, 2022, 27, 4117.	1.7	17
276	Hydrothermal synthesis and characterization of graphene/self-assembled SnO2 hybrid. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1931-1935.	1.3	16
277	Lithium Salt Inclusion as a Strategy for Improving the Li ⁺ Conductivity of Nafion Membranes in Aprotic Systems. Advanced Materials Interfaces, 2016, 3, 1600660.	1.9	16
278	Construction of advanced 3D Co3S4@PPy nanowire anchored on nickel foam for high-performance electrochemical energy storage. Electrochimica Acta, 2020, 334, 135635.	2.6	16
279	Sciadopitysin suppresses RANKL-mediated osteoclastogenesis and prevents bone loss in LPS-treated mice. International Immunopharmacology, 2017, 49, 109-117.	1.7	16
280	Diverse birnessite MnO 2 nanosheets-based nanocomposites for supercapacitors. Materials Letters, 2016, 171, 319-322.	1.3	15
281	One-pot fabrication of N, S co-doped carbon with 3D hierarchically porous frameworks and high electron/ion transfer rate for lithium-ion batteries. Chemical Engineering Science, 2021, 234, 116453.	1.9	15
282	A triple-layered PPy@NiCo LDH/FeCo2O4 hybrid crystalline structure with high electron conductivity and abundant interfaces for supercapacitors and oxygen evolution. CrystEngComm, 2021, 23, 2262-2268.	1.3	15
283	ZIFs derived multiphase CoSe2 nanoboxes induced and fixed on CoAl-LDH nanoflowers for high-performance hybrid supercapacitor. Chemical Engineering Science, 2022, 252, 117241.	1.9	15
284	Graphene as a high-capacity anode material for lithium ion batteries. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 220-223.	0.4	14
285	Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge. PLoS ONE, 2015, 10, e0130683.	1.1	14
286	Facile synthesis of Cu ₃ Mo ₂ O ₉ @Ni foam nano - structures for high-performance supercapacitors. Materials Technology, 2016, 31, 653-657.	1.5	14
287	Facile Fabrication of NiCo ₂ O ₄ @g-C ₃ N ₄ (C) Hybrids for High-Performance Supercapacitors. Journal of Nanoscience and Nanotechnology, 2019, 19, 73-80.	0.9	14
288	The role of morphological changes in algae adaptation to nutrient stress at the single-cell level. Science of the Total Environment, 2021, 754, 142076.	3.9	14

#	Article	lF	Citations
289	Active Corrosion Protection of Mg–Al Layered Double Hydroxide for Magnesium Alloys: A Short Review. Coatings, 2021, 11, 1316.	1.2	14
290	The Protective Effects of HJB-1, a Derivative of 17-Hydroxy-Jolkinolide B, on LPS-Induced Acute Distress Respiratory Syndrome Mice. Molecules, 2016, 21, 77.	1.7	13
291	A general strategy for in-situ fabrication of uniform carbon nanotubes on three-dimensional carbon architectures for electrochemical application. Applied Surface Science, 2019, 496, 143704.	3.1	13
292	Constructing defective (BiO)2CO3 with different dominated facets for efficiently photocatalytic NO oxidization and in situ reaction pathway study. Applied Surface Science, 2019, 498, 143848.	3.1	13
293	OH/Na co-functionalized carbon nitride: directional charge transfer and enhanced photocatalytic oxidation ability. Catalysis Science and Technology, 2020, 10, 529-535.	2.1	13
294	LLZO@EmimFSI@PEO derived hybrid solid electrolyte for high-energy lithium metal batteries. Materials Technology, 2020, 35, 618-624.	1.5	13
295	3D X-ray micro-computed tomography imaging for the microarchitecture evaluation of porous metallic implants and scaffolds. Micron, 2021, 142, 102994.	1.1	13
296	Unveiling the Role of Atomically Dispersed Active Sites over Amorphous Iron Oxide Supported Pt Catalysts for Complete Catalytic Ozonation of Toluene at Low Temperature. Industrial & Engineering Chemistry Research, 2021, 60, 3881-3892.	1.8	13
297	A route for large-scale preparation of multifunctional superhydrophobic coating with electrochemically-modified kaolin for efficient corrosion protection of magnesium alloys. Journal of Magnesium and Alloys, 2022, 10, 3082-3099.	5. 5	13
298	Enhanced Electromagnetic Wave Absorption Properties of Ultrathin MnO2 Nanosheet-Decorated Spherical Flower-Shaped Carbonyl Iron Powder. Molecules, 2022, 27, 135.	1.7	13
299	NiFe LDH Anchoring on Fe/N-Doped Carbon Nanofibers as a Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 7523-7528.	1.8	13
300	Decoration of Cu nanowires with chemically modified TiO2 nanoparticles for their improved photocatalytic performance. Journal of Materials Science, 2013, 48, 6728-6736.	1.7	12
301	Green synthesis of SnO2 nanosheets and their electrochemical properties. Ceramics International, 2013, 39, 3413-3415.	2.3	12
302	Rational design of manganese dioxide decorated skeleton of colloidal mesoporous carbon nanocomposites for supercapacitors. Ceramics International, 2014, 40, 13381-13388.	2.3	12
303	Enhanced Visible Light Photocatalytic Activity of Br-Doped Bismuth Oxide Formate Nanosheets. Molecules, 2015, 20, 19189-19202.	1.7	12
304	Liquid-solid-solution assembly of morphology-controllable Fe2O3/graphene nanostructures as high-performance LIB anodes. Ceramics International, 2016, 42, 19006-19011.	2.3	12
305	Fabricating 3D Macroscopic Graphene-Based Architectures with Outstanding Flexibility by the Novel Liquid Drop/Colloid Flocculation Approach for Energy Storage Applications. ACS Applied Materials & Amp; Interfaces, 2018, 10, 21991-22001.	4.0	12
306	Impact of Migrant Workers on Total Factor Productivity in Chinese Construction Industry. Sustainability, 2019, 11, 926.	1.6	12

#	Article	IF	Citations
307	Simultaneous Removal of Phenol and Pb ²⁺ from the Mixed Solution by Zwitterionic Poly(sulfobetaine methacrylate)-Grafted Poly(vinylbenzyl chloride) Microspheres. Industrial & Engineering Chemistry Research, 2020, 59, 6065-6077.	1.8	12
308	Melamine sponge derived porous carbon monoliths with NiMn oxides for high performance supercapacitor. Chinese Chemical Letters, 2020, 31, 2245-2248.	4.8	12
309	High-rate asymmetrical supercapacitors based on cobalt-doped birnessite nanotubes and Mn-FeOOH nanotubes. Chemical Communications, 2020, 56, 3257-3260.	2.2	12
310	Ni-decorated Fe-/N- co-doped carbon anchored on porous cobalt oxide nanowires arrays for efficient electrocatalytic oxygen evolution. Chemical Engineering Science, 2021, 243, 116774.	1.9	12
311	Transition metal carbonate anodes for Li-ion battery: fundamentals, synthesis and modification. Journal of Energy Chemistry, 2022, 70, 95-120.	7.1	12
312	Phoenix tree leaves-derived biomass carbons for sodium-ion batteries. Functional Materials Letters, 2018, 11, 1840008.	0.7	11
313	Deposition of thin Î-MnO2 functional layers on carbon foam/sulfur composites for synergistically inhibiting polysulfides shuttling and increasing sulfur utilization. Electrochimica Acta, 2019, 305, 247-255.	2.6	11
314	Engineering hydrogenated manganese dioxide nanostructures for high-performance supercapacitors. Journal of Colloid and Interface Science, 2019, 537, 661-670.	5.0	11
315	Hierarchical Co-doped SnS2@Ni(OH)2 double-shell crystalline structure on carbon cloth with gradient pore distribution for superior capacitance. CrystEngComm, 2020, 22, 5067-5072.	1.3	11
316	One-step hydrothermal synthesis of flower-like SnO2/carbon nanotubes composite and its electrochemical properties. Journal of Sol-Gel Science and Technology, 2012, 63, 569-572.	1.1	10
317	Facile synthesis of ATO/MnO2 core–shell architectures for electrochemical capacitive energy storage. Ceramics International, 2014, 40, 10309-10315.	2.3	10
318	Tuned hydrothermal synthesis of vanadium dioxide nanotubes. Ceramics International, 2015, 41, 13967-13973.	2.3	10
319	Fabrication of mesoporous gold networks@MnO2 for high-performance supercapacitors. Gold Bulletin, 2017, 50, 61-68.	1.1	10
320	Vertically aligned, polypyrrole encapsulated MoS2/graphene composites for high-rate LIBs anode. Ceramics International, 2018, 44, 7611-7617.	2.3	10
321	Neatly arranged mesoporous MnO ₂ nanotubes with oxygen vacancies for electrochemical energy storage. Dalton Transactions, 2020, 49, 17552-17558.	1.6	10
322	Hydrothermally controlled synthesis of 3D dendrite MnOOH nanorods through self-assembly of MnO2 nanoparticles in acid solution. Physica B: Condensed Matter, 2013, 416, 23-28.	1.3	9
323	Controllable synthesis of a 3D ZnS@MoO ₃ heterojunction <i>via</i> a hydrothermal method towards efficient NO purification under visible light. CrystEngComm, 2020, 22, 257-266.	1.3	9
324	Pores enriched CoNiO2 nanosheets on graphene hollow fibers for high performance supercapacitor-battery hybrid energy storage. Electrochimica Acta, 2020, 358, 136857.	2.6	9

#	Article	IF	Citations
325	Synergistic Coupling of SnS ₂ Nanosheet Arrays with Ni/Fe Dual Metal and Ru Nanodots <i>via</i> a Cation Exchange Strategy for Overall Water Splitting. Industrial & Engineering Chemistry Research, 2022, 61, 382-391.	1.8	9
326	Improving the Performance of Perovskite in Nonaqueous Oxygen Electrocatalysis. Chemistry - an Asian Journal, 2016, 11, 1210-1217.	1.7	8
327	Electrochemical capacitor performance of TiO2 nanostructures and porous MnO2 composite supported on carbon fiber paper. Ceramics International, 2017, 43, 10595-10600.	2.3	8
328	Morphological evolution process of Î-MnO2 from 2-D to 1-D without phase transition. CrystEngComm, 2019, 21, 4593-4598.	1.3	8
329	Enhanced Coagulation-Flocculation Performance of Iron-Based Coagulants: Effects of PO43- and SiO32- Modifiers. PLoS ONE, 2015, 10, e0137116.	1.1	7
330	Ag nanoparticle decorated MnO ₂ flakes as flexible SERS substrates for rhodamine 6G detection. RSC Advances, 2018, 8, 37750-37756.	1.7	7
331	Editorial: Photocatalysis for Environmental Applications. Frontiers in Chemistry, 2019, 7, 303.	1.8	7
332	Engineering lithiophilic Ni-Al@LDH interlayers on a garnet-type electrolyte for solid-state lithium metal batteries. Chemical Communications, 2021, 57, 10214-10217.	2.2	7
333	Lithium metal structural battery developed with vacuum bagging. Journal of Materials Chemistry C, 2022, 10, 1887-1895.	2.7	7
334	Vanadium pentoxide nanosheets with rich oxygen vacancies as a high-performance electrode for supercapacitors. Ionics, 2022, 28, 2931-2942.	1.2	7
335	Large-scale prepared superhydrophobic HDTMS-modified diatomite/epoxy resin composite coatings for high-performance corrosion protection of magnesium alloys. Progress in Organic Coatings, 2022, 170, 106999.	1.9	7
336	ONE-STEP AND CONTROLLABLE SELF-ASSEMBLY OF Au/TiO₂ /CARBON SPHERES TERNARY NANOCOMPOSITES WITH A NANOPARTICLE MONOSHELL WALL. Nano, 2012, 07, 1250025.	0.5	6
337	Templated self-assembly of Au–TiO2 binary nanoparticles–nanotubes. Chinese Chemical Letters, 2014, 25, 874-878.	4.8	6
338	A novel electrochemical sensor based on nafion-stabilized Au(i)–alkanethiolate nanotubes modified glassy carbon electrode for the detection of Hg2+. Analytical Methods, 2014, 6, 4988.	1.3	6
339	Rapid oxidation-etching synthesis of low-crystalline l̂-MnO2 tubular nanostructures under ambient with high capacitance. Journal of Colloid and Interface Science, 2019, 557, 168-173.	5.0	6
340	Supercapacitor nanomaterials. , 2020, , 295-324.		6
341	Modulating the oxidation states in nickel–iron layered double hydroxides by natural cooling for enhanced oxygen evolution activity. CrystEngComm, 2022, 24, 1573-1581.	1.3	6
342	Compressible Neuron-like 3D Few-Layered MoS ₂ /N-Doped Graphene Foam as Freestanding and Binder-Free Electrodes for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 7249-7259.	2.5	6

#	Article	IF	Citations
343	Suspended hybrid films assembled from thiol-capped gold nanoparticles. Nanoscale Research Letters, 2012, 7, 295.	3.1	5
344	One-pot synthesis for Lysie-capped Au-TiO2 binary nanocomposites. Ceramics International, 2016, 42, 19450-19453.	2.3	5
345	In-situ TEM on the coalescence of birnessite manganese dioxides nanosheets during lithiation process. Materials Research Bulletin, 2016, 79, 36-40.	2.7	5
346	A high-performance adsorbent of 2D Laponite in-situ coated on 3D diatomite for advanced adsorption of cationic dye. Science China Technological Sciences, 2022, 65, 2304-2316.	2.0	5
347	Influence of Li+/Al3+ on the corrosion behavior of Li-Al layered double hydroxides (LDHs) film on LA51 magnesium alloys. Journal of Magnesium and Alloys, 2023, 11, 1083-1093.	5.5	5
348	Effect of different ethanol/water solvent ratios on the morphology of SnO2 nanocrystals and their electrochemical properties. Materials Science in Semiconductor Processing, 2013, 16, 742-746.	1.9	4
349	Tunable fabrication of Au-TiO2 bi-nanoparticles monolayer on graphene oxides. Ceramics International, 2016, 42, 16364-16367.	2.3	4
350	Non-selective synthesis and controllable transformation of parallel MnO ₂ with hydrogen ions. CrystEngComm, 2020, 22, 6101-6105.	1.3	4
351	Ultra-small MnCo2O4 nanocrystals decorated on nitrogen-enriched carbon nanofibers as oxygen cathode for Li-O2 batteries. Functional Materials Letters, 2020, 13, 2051035.	0.7	4
352	Temporal delay estimation of sparse direct visual inertial odometry for mobile robots. Journal of the Franklin Institute, 2020, 357, 3893-3906.	1.9	4
353	Mirror-like Bright Al-Mn Coatings Electrodeposition from 1-Ethyl-3 Methylimidazolium Chloride-AlCl3-MnCl2 Ionic Liquids with Pyridine Derivatives. Materials, 2021, 14, 6226.	1.3	4
354	Constructing a composite lithium anode for high-performance solid-state lithium–metal batteries via ⟨i⟩in-situ⟨ i⟩ alloying reaction. Functional Materials Letters, 2022, 15, .	0.7	4
355	Microstructure, Electromagnetic Properties, and Microwave Absorption Mechanism of SiO2-MnO-Al2O3 Based Manganese Ore Powder for Electromagnetic Protection. Molecules, 2022, 27, 3758.	1.7	4
356	Rational Design of an FeCo ₂ O ₄ @FeCo ₂ S ₄ Heterostructure as an Efficient Bifunctional Electrocatalyst for Znâ€"Air Batteries. ACS Applied Energy Materials, 2022, 5, 9742-9749.	2.5	4
357	A direct method for ultrafine gold networks with nanometre scale ligaments. International Journal of Nanotechnology, 2011, 8, 816.	0.1	3
358	Ultrafast synthesis of Au(I)-dodecanethiolate nanotubes for advanced Hg2+ sensor electrodes. Nanoscale Research Letters, 2014, 9, 601.	3.1	3
359	Facile constructing ZnO/ZnCO3 heterojunction for high-performance photocatalytic NO oxidation and reaction pathway study. Journal of Materials Science: Materials in Electronics, 2020, 31, 4527-4534.	1.1	3
360	Compulsive malposition of birnessite slab in 2D-Parallel birnessite on Î ² -MnO2 networks for enhanced pseudocapacitance performances. Nano Materials Science, 2021, 3, 404-411.	3.9	3

#	Article	IF	Citations
361	Additives of Graphene Nanosheets on the Anode Performance of Spherical Natural Graphite for Lithium-lon Batteries. Nanoscience and Nanotechnology Letters, 2012, 4, 191-194.	0.4	3
362	A Comparison of Exfoliation Methods on Microstructure and Electrochemical Performance of Graphene Nanosheets for Supercapacitors. Journal of New Materials for Electrochemical Systems, 2012, 15, 97-101.	0.3	3
363	Effects of Additives Containing Cyanopyridine on Electrodeposition of Bright Al Coatings from AlCl3-EMIC Ionic Liquids. Coatings, 2021, 11, 1396.	1.2	3
364	Rational structure design of FeCo-based materials as efficient electrodes for overall water-splitting. Functional Materials Letters, 2022, 15, .	0.7	3
365	Tuning Hierarchical Ferric Nanostructures-Decorated Diatomite for Supercapacitors. Nanoscale Research Letters, 2018, 13, 407.	3.1	2
366	Interfacial polygonal patterning via surfactant-mediated self-assembly of gold nanoparticles. Nanoscale Research Letters, 2013, 8, 436.	3.1	1
367	Materials Chemistry for Sustainability and Energy. Journal of Chemistry, 2014, 2014, 1-3.	0.9	1
368	Fine-scale variation of a keystone interaction: aphid-tending ants show stronger anti-herbivory effects on small leaves. Arthropod-Plant Interactions, 2020, 14, 357-361.	0.5	1
369	Interfacial engineered Fe2O3@FeP nanorod arrays as capacitive storage dominated and high charge transfer anode for high-rate lithium-ion batteries. Surface and Coatings Technology, 2021, 421, 127471.	2.2	1
370	Effects of symmetrically alternative rotating flow on flocculation. Central South University, 2003, 10, 338-341.	0.5	0
371	The Flocculation and Stability of TiO ₂ Nanoparticles. Advanced Materials Research, 0, 548, 138-142.	0.3	0
372	Phoenix Tree Leaves–Derived Biomass Carbons for Sodium-Ion Batteries. , 2021, , 135-146.		0