Andrew S Herbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9430264/publications.pdf

Version: 2024-02-01

47 papers

4,477 citations

172207 29 h-index 243296 44 g-index

55 all docs 55 docs citations

55 times ranked 7987 citing authors

#	Article	IF	CITATIONS
1	Antibody Response to SARS-CoV-2 Infection and Vaccination in COVID-19-naÃ-ve and Experienced Individuals. Viruses, 2022, 14, 370.	1.5	5
2	Human antibody recognizing a quaternary epitope in the Puumala virus glycoprotein provides broad protection against orthohantaviruses. Science Translational Medicine, 2022, 14, eabl5399.	5.8	16
3	Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science, 2021, 371, 823-829.	6.0	285
4	Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes. Science, 2021, 372, 1108-1112.	6.0	210
5	Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell, 2021, 184, 3486-3501.e21.	13.5	39
6	Heparin: A simplistic repurposing to prevent SARS-CoV-2 transmission in light of its in-vitro nanomolar efficacy. International Journal of Biological Macromolecules, 2021, 183, 203-212.	3.6	28
7	Characterization of an Anti-Ebola virus Hyperimmune Globulin Derived from Convalescent Plasma. Journal of Infectious Diseases, 2021, , .	1.9	3
8	Antiviral evaluation of hydroxyethylamine analogs: Inhibitors of SARS-CoV-2 main protease (3CLpro), a virtual screening and simulation approach. Bioorganic and Medicinal Chemistry, 2021, 47, 116393.	1.4	15
9	A Combination of Receptor-Binding Domain and N-Terminal Domain Neutralizing Antibodies Limits the Generation of SARS-CoV-2 Spike Neutralization-Escape Mutants. MBio, 2021, 12, e0247321.	1.8	35
10	Two Distinct Lysosomal Targeting Strategies Afford Trojan Horse Antibodies With Pan-Filovirus Activity. Frontiers in Immunology, 2021, 12, 729851.	2.2	5
11	Neutralizing Antibodies against Crimean–Congo Hemorrhagic Fever Virus Derived from a Human Survivor. Proceedings (mdpi), 2020, 50, .	0.2	0
12	Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science, 2020, 369, 1261-1265.	6.0	520
13	Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science, 2020, 369, 731-736.	6.0	534
14	Mapping the Interface between New World Hantaviruses and Their Receptor, PCDH1. Proceedings (mdpi), 2020, 50, .	0.2	0
15	A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. Cell Host and Microbe, 2020, 28, 486-496.e6.	5.1	178
16	Development of an antibody cocktail for treatment of Sudan virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3768-3778.	3.3	23
17	Convalescent plasma anti–SARS-CoV-2 spike protein ectodomain and receptor-binding domain IgG correlate with virus neutralization. Journal of Clinical Investigation, 2020, 130, 6728-6738.	3.9	172
18	Multiple viral proteins and immune response pathways act to generate robust long-term immunity in Sudan virus survivors. EBioMedicine, 2019, 46, 215-226.	2.7	2

#	Article	IF	CITATIONS
19	Structural basis of broad ebolavirus neutralization by a human survivor antibody. Nature Structural and Molecular Biology, 2019, 26, 204-212.	3.6	30
20	Development of a Human Antibody Cocktail that Deploys Multiple Functions to Confer Pan-Ebolavirus Protection. Cell Host and Microbe, 2019, 25, 39-48.e5.	5.1	83
21	A Two-Antibody Pan-Ebolavirus Cocktail Confers Broad Therapeutic Protection in Ferrets and Nonhuman Primates. Cell Host and Microbe, 2019, 25, 49-58.e5.	5.1	82
22	Protocadherin-1 is essential for cell entry by New World hantaviruses. Nature, 2018, 563, 559-563.	13.7	84
23	Post-Exposure Protection in Mice against Sudan Virus by a Two Antibody Cocktail. Viruses, 2018, 10, 286.	1.5	16
24	A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host and Microbe, 2018, 24, 221-233.e5.	5.1	182
25	Longitudinal peripheral blood transcriptional analysis of a patient with severe Ebola virus disease. Science Translational Medicine, 2017, 9, .	5 . 8	23
26	Cooperativity Enables Non-neutralizing Antibodies to Neutralize Ebolavirus. Cell Reports, 2017, 19, 413-424.	2.9	66
27	Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Protective, Noninfectious Vaccine against Ebola Virus Challenge in Mice. Journal of Virology, 2017, 91, .	1.5	23
28	Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses. Cell, 2017, 169, 878-890.e15.	13.5	145
29	Marburg virus survivor immune responses are Th1 skewed with limited neutralizing antibody responses. Journal of Experimental Medicine, 2017, 214, 2563-2572.	4.2	15
30	NRP2 and CD63 Are Host Factors for Lujo Virus Cell Entry. Cell Host and Microbe, 2017, 22, 688-696.e5.	5.1	108
31	Correspondence of Neutralizing Humoral Immunity and CD4 T Cell Responses in Long Recovered Sudan Virus Survivors. Viruses, 2016, 8, 133.	1.5	8
32	A Single Residue in Ebola Virus Receptor NPC1 Influences Cellular Host Range in Reptiles. MSphere, 2016, 1 , .	1.3	25
33	A "Trojan horse―bispecific-antibody strategy for broad protection against ebolaviruses. Science, 2016, 354, 350-354.	6.0	101
34	Production of Potent Fully Human Polyclonal Antibodies against Ebola Zaire Virus in Transchromosomal Cattle. Scientific Reports, 2016, 6, 24897.	1.6	35
35	Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Reports, 2016, 15, 1514-1526.	2.9	80
36	Cysteine Cathepsin Inhibitors as Anti-Ebola Agents. ACS Infectious Diseases, 2016, 2, 173-179.	1.8	33

#	Article	IF	CITATIONS
37	Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. Journal of Virology, 2016, 90, 266-278.	1.5	92
38	Macaque Monoclonal Antibodies Targeting Novel Conserved Epitopes within Filovirus Glycoprotein. Journal of Virology, 2016, 90, 279-291.	1.5	72
39	Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion. MBio, 2015, 6, e00801.	1.8	100
40	Niemann-Pick C1 Is Essential for Ebolavirus Replication and Pathogenesis <i>In Vivo</i> . MBio, 2015, 6, e00565-15.	1.8	65
41	Novel Small Molecule Entry Inhibitors of Ebola Virus. Journal of Infectious Diseases, 2015, 212, S425-S434.	1.9	49
42	Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention. PLoS Pathogens, 2015, 11, e1005220.	2.1	42
43	Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. ELife, 2015, 4, .	2.8	110
44	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	1.5	49
45	Lassa virus entry requires a trigger-induced receptor switch. Science, 2014, 344, 1506-1510.	6.0	251
46	Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Protects Nonhuman Primates from Intramuscular and Aerosol Challenge with Ebolavirus. Journal of Virology, 2013, 87, 4952-4964.	1.5	87
47	Postexposure antibody prophylaxis protects nonhuman primates from filovirus disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5034-5039.	3.3	246