Agnieszka Baran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9430029/publications.pdf

Version: 2024-02-01

51	1,082	17 h-index	30
papers	citations		g-index
51	51	51	1223
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Assessment of heavy metals mobility and toxicity in contaminated sediments by sequential extraction and a battery of bioassays. Ecotoxicology, 2015, 24, 1279-1293.	2.4	95
2	Assessment of the pollution and ecological risk of lead and cadmium in soils. Environmental Geochemistry and Health, 2018, 40, 2325-2342.	3.4	71
3	The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environmental Geochemistry and Health, 2019, 41, 2893-2910.	3.4	69
4	Potential ecological risk assessment and predicting zinc accumulation in soils. Environmental Geochemistry and Health, 2018, 40, 435-450.	3.4	62
5	Phytotoxkit/Phytotestkit and Microtox \hat{A}^{\otimes} as tools for toxicity assessment of sediments. Ecotoxicology and Environmental Safety, 2013, 98, 19-27.	6.0	58
6	Sewage sludge biochars managementâ€"Ecotoxicity, mobility of heavy metals, and soil microbial biomass. Environmental Toxicology and Chemistry, 2018, 37, 1197-1207.	4.3	53
7	Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir, Silesian-Poland. Environmental Science and Pollution Research, 2016, 23, 17255-17268.	5.3	48
8	The effect of low-temperature transformation of mixtures of sewage sludge and plant materials on content, leachability and toxicity of heavy metals. Chemosphere, 2014, 117, 33-39.	8.2	44
9	A mixture of cellulose production waste with municipal sewage as new material for an ecological management of wastes. Ecotoxicology and Environmental Safety, 2019, 169, 607-614.	6.0	35
10	Concentration, sources and risk assessment of PAHs in bottom sediments. Environmental Science and Pollution Research, 2017, 24, 23180-23195.	5.3	34
11	Assessment of respiration activity and ecotoxicity of composts containing biopolymers. Ecotoxicology and Environmental Safety, 2013, 89, 137-142.	6.0	29
12	Use of Chemical Indicators and Bioassays in Bottom Sediment Ecological Risk Assessment. Archives of Environmental Contamination and Toxicology, 2018, 74, 395-407.	4.1	29
13	Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield. International Agrophysics, 2017, 31, 367-375.	1.7	27
14	Effect of the Addition of Biochar and Coffee Grounds on the Biological Properties and Ecotoxicity of Composts. Waste and Biomass Valorization, 2018, 9, 1389-1398.	3.4	25
15	The contents of the potentially harmful elements in the arable soils of southern Poland, with the assessment of ecological and health risks: a case study. Environmental Geochemistry and Health, 2020, 42, 419-442.	3.4	25
16	Content of nutrients, trace elements, and ecotoxicity of sediment cores from RoÅ 1 /4nÃ 3 w reservoir (Southern Poland). Environmental Geochemistry and Health, 2019, 41, 2929-2948.	3.4	22
17	AN ASSESSMENT OF BOTTOM SEDIMENT AS A SOURCE OF PLANT NUTRIENTS AND AN AGENT FOR IMPROVING SOIL PROPERTIES. Environmental Engineering and Management Journal, 2019, 18, 1647-1656.	0.6	20
18	The effect of bottom sediment supplement on changes of soil properties and on the chemical composition of plants. Geology Geophysics & Environment, 2015, 41, 285.	1.0	18

#	Article	IF	CITATIONS
19	Concentration and health risk assessment of nitrates in vegetables from conventional and organic farming. Human and Ecological Risk Assessment (HERA), 2017, 23, 727-740.	3.4	16
20	Effects of soil amendment with PCB-contaminated sediment on the growth of two cucurbit species. Environmental Science and Pollution Research, 2020, 27, 8872-8884.	5.3	16
21	An assessment of the concentrations of PCDDs/Fs in contaminated bottom sediments and their sources and ecological risk. Journal of Soils and Sediments, 2020, 20, 2588-2597.	3.0	16
22	Ecotoxicological characteristics and ecological risk assessment of trace elements in the bottom sediments of the Rożnów reservoir (Poland). Ecotoxicology, 2020, 29, 45-57.	2.4	16
23	Ecotoxicological and chemical properties of the roÅ $\frac{1}{4}$ nÃ 3 w reservoir bottom sediment amended with various waste materials. Journal of Environmental Management, 2020, 273, 111176.	7.8	16
24	The possibilities of the environmental use of bottom sediments from the silted inlet zone of the RoÅ 1 /4nÅ 3 w Reservoir. Geology Geophysics & Environment, 2017, 43, 335.	1.0	16
25	Pollution indices and biotests as useful tools for the evaluation of the degree of soil contamination by trace elements. Journal of Soils and Sediments, 2022, 22, 559-576.	3.0	16
26	Selected Properties of Flotation Tailings Wastes Deposited in the Gilów and Å»elazny Most Waste Reservoirs Regarding Their Potential Environmental Management / Wybrane WÅ,aÅ›ciwoÅ›ci Odpadów Poflotacyjnych Zdeponowanych W Zbiornikach Gilów I Å»elazny Most W Aspekcie MoŹ⁄₄liwoÅ›ci Ich Zagospodarowania Przyrodniczego. Archives of Mining Sciences, 2013, 58, 969-978.	0.6	15
27	The use of Callitriche cophocarpa Sendtn. for the reclamation of Cr-contaminated freshwater habitat: benefits and limitations. Environmental Science and Pollution Research, 2020, 27, 25510-25522.	5.3	14
28	Distribution of polycyclic aromatic hydrocarbons (PAHs) in the bottom sediments of a dam reservoir, their interaction with organic matter and risk to benthic fauna. Journal of Soils and Sediments, 2021, 21, 2418-2431.	3.0	14
29	The influence of the physicochemical properties of sediment on the content and ecotoxicity of trace elements in bottom sediments. Chemosphere, 2022, 287, 132366.	8.2	14
30	Application of geochemical and ecotoxicity indices for assessment of heavy metals content in soils / Zastosowanie wskaÅ ⁹ nikÃ ³ w geochemicznych i ekotokysycznych w ocenie zawartoÅ›ci metali ciÄ™Å ¹ ⁄4kich w glebach. Archives of Environmental Protection, 2015, 41, 54-63.	1.1	13
31	Phytotoxicity and extractability of heavy metals from industrial wastes. Environmental Protection Engineering, 2017, 43, .	0.1	13
32	Mobility, ecotoxicity, bioaccumulation and sources of trace elements in the bottom sediments of the RoÅ 1 /4nÅ 3 w reservoir. Environmental Geochemistry and Health, 2021, 43, 4701-4718.	3.4	12
33	Evaluation of ecotoxicological and chemical properties of soil amended with Hudson River (New) Tj ETQq $1\ 1\ 0.78^2$	1314 rgBT	/Overlock
34	Removal and Ecotoxicity of 2,4-D and MCPA in Microbial Cultures Enriched with Structurally-Similar Plant Secondary Metabolites. Water (Switzerland), 2019, 11, 1451.	2.7	10
35	Utilization of PCB-contaminated Hudson River sediment by thermal processing and phytoremediation. Science of the Total Environment, 2020, 738, 139841.	8.0	10
36	Enrichment of Different Plant Seeds with Zinc and Assessment of Health Risk of Zn-Fortified Sprouts Consumption. Agronomy, 2020, 10, 937.	3.0	9

#	Article	IF	CITATIONS
37	Content and health risk assessment of selected elements in the Yerba mate (<i>llex paraguariensis</i>), Tj ETQq1	1 _{3.4} 78431	4grgBT/O√
38	Effects of amendments of PCB-containing Hudson River sediment on soil quality and biochemical and growth response of cucumber (<i>Cucumis sativus</i> L. cv †Wisconsin SMR 58†M). International Journal of Phytoremediation, 2020, 22, 1224-1232.	3.1	8
39	Content of PAHs, activities of \hat{I}^3 -radionuclides and ecotoxicological assessment in biochars. Polish Journal of Chemical Technology, 2016, 18, 27-35.	0.5	7
40	Geochemical Fractions of the Agricultural Soils of Southern Poland and the Assessment of the Potentially Harmful Element Mobility. Minerals (Basel, Switzerland), 2019, 9, 674.	2.0	7
41	Strategy of Cr detoxification by Callitriche cophocarpa. Open Chemistry, 2013, 11, 295-303.	1.9	6
42	Content and health risk assessment of selected elements in commercially available fish and fish products. Human and Ecological Risk Assessment (HERA), 2018, 24, 1623-1641.	3.4	6
43	Mercury contamination of bottom sediments in water reservoirs of southern Poland. Geology Geophysics & Environment, 2015, 41, 169.	1.0	6
44	Assessment of the health risk associated with exposure to heavy metals present in particulate matter deposition in the MaÅ,opolska Province. Geology Geophysics and Environment, 2021, 47, 95-107.	0.3	6
45	Agronomic and environmental quality assessment of growing media based on bottom sediment. Journal of Soils and Sediments, 2022, 22, 1355-1367.	3.0	5
46	Biodegradation Potential and Ecotoxicity Assessment in Soil Extracts Amended with Phenoxy Acid Herbicide (2,4-D) and a Structurally-Similar Plant Secondary Metabolite (Ferulic Acid). Bulletin of Environmental Contamination and Toxicology, 2020, 104, 200-205.	2.7	4
47	The application of the germination index in the assessment of the phytotoxicity of bottom sediments from the Rybnik Reservoir. Geology Geophysics & Environment, 2017, 43, 327.	1.0	3
48	Concentration of dioxin and screening level ecotoxicity of pore water from bottom sediments in relation to organic carbon contents. Ecotoxicology, 2021, 30, 57-66.	2.4	2
49	The evaluation of Hudson River sediment as a growth substrate – Microbial activity, PCB-degradation potential and risk assessment. Science of the Total Environment, 2022, 836, 155561.	8.0	2
50	The content and composition of organic matter in bottom sediments of the Rybnik reservoir – preliminary studies. Geology Geophysics & Environment, 2018, 44, 309.	1.0	1
51	Impact of thermal treatment of mixtures of sewage sludge and plant material on selected chemical properties and <i>Vibrio fischeri</i> response. Ecological Chemistry and Engineering S, 2017, 24, 443-455.	1.5	O