
Jane Synnergren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9429918/publications.pdf Version: 2024-02-01

IANE SYNNEDODEN

#	Article	IF	CITATIONS
1	Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells. Journal of Hepatology, 2015, 63, 934-942.	3.7	165
2	Multimodal deep learning for biomedical data fusion: a review. Briefings in Bioinformatics, 2022, 23, .	6.5	118
3	Long-Term Chronic Toxicity Testing Using Human Pluripotent Stem Cell–Derived Hepatocytes. Drug Metabolism and Disposition, 2014, 42, 1401-1406.	3.3	87
4	CSF/serum albumin ratio in dementias: a cross-sectional study on 1861 patients. Neurobiology of Aging, 2017, 59, 1-9.	3.1	84
5	Human iPS-Derived Astroglia from a Stable Neural Precursor State Show Improved Functionality Compared with Conventional Astrocytic Models. Stem Cell Reports, 2018, 10, 1030-1045.	4.8	81
6	Barrier Properties and Transcriptome Expression in Human iPSC-Derived Models of the Blood–Brain Barrier. Stem Cells, 2018, 36, 1816-1827.	3.2	81
7	Molecular Signature of Cardiomyocyte Clusters Derived from Human Embryonic Stem Cells. Stem Cells. Cells, 2008, 26, 1831-1840.	3.2	78
8	Identification of novel biomarkers for doxorubicin-induced toxicity in human cardiomyocytes derived from pluripotent stem cells. Toxicology, 2015, 328, 102-111.	4.2	71
9	Human Embryonic Stem Cell Derived Hepatocyte-Like Cells as a Tool for In Vitro Hazard Assessment of Chemical Carcinogenicity. Toxicological Sciences, 2011, 124, 278-290.	3.1	66
10	Global transcriptional profiling reveals similarities and differences between human stem cell-derived cardiomyocyte clusters and heart tissue. Physiological Genomics, 2012, 44, 245-258.	2.3	65
11	Human Embryonic Mesodermal Progenitors Highly Resemble Human Mesenchymal Stem Cells and Display High Potential for Tissue Engineering Applications. Tissue Engineering - Part A, 2010, 16, 2161-2182.	3.1	64
12	Differentiating Human Embryonic Stem Cells Express a Unique Housekeeping Gene Signature. Stem Cells, 2007, 25, 473-480.	3.2	58
13	Hepatic Differentiation and Maturation of Human Embryonic Stem Cells Cultured in a Perfused Three-Dimensional Bioreactor. Stem Cells and Development, 2013, 22, 581-594.	2.1	56
14	MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity. Toxicology in Vitro, 2016, 34, 26-34.	2.4	51
15	Models of the blood-brain barrier using iPSC-derived cells. Molecular and Cellular Neurosciences, 2020, 107, 103533.	2.2	44
16	Comparison of human cardiac gene expression profiles in paired samples of right atrium and left ventricle collected in vivo. Physiological Genomics, 2012, 44, 89-98.	2.3	43
17	Maintenance of drug metabolism and transport functions in human precision-cut liver slices during prolonged incubation for 5Âdays. Archives of Toxicology, 2017, 91, 2079-2092.	4.2	33
18	Expression Profiling of Human Pluripotent Stem Cell-Derived Cardiomyocytes Exposed to Doxorubicin—Integration and Visualization of Multi-Omics Data. Toxicological Sciences, 2018, 163, 182-195.	3.1	30

JANE SYNNERGREN

#	Article	IF	CITATIONS
19	Cardiomyogenic gene expression profiling of differentiating human embryonic stem cells. Journal of Biotechnology, 2008, 134, 162-170.	3.8	26
20	Diabetic Cardiomyopathy Modelling Using Induced Pluripotent Stem Cell Derived Cardiomyocytes: Recent Advances and Emerging Models. Stem Cell Reviews and Reports, 2019, 15, 13-22.	5.6	25
21	Expression of microRNAs and their target mRNAs in human stem cell-derived cardiomyocyte clusters and in heart tissue. Physiological Genomics, 2011, 43, 581-594.	2.3	24
22	Identification of stable reference genes in differentiating human pluripotent stem cells. Physiological Genomics, 2015, 47, 232-239.	2.3	18
23	Transcriptional Profiling of Human Embryonic Stem Cells Differentiating to Definitive and Primitive Endoderm and Further Toward the Hepatic Lineage. Stem Cells and Development, 2010, 19, 961-978.	2.1	17
24	Characterization of Human Induced Pluripotent Stem Cell-Derived Hepatocytes with Mature Features and Potential for Modeling Metabolic Diseases. International Journal of Molecular Sciences, 2020, 21, 469.	4.1	14
25	High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue. Biochemical and Biophysical Research Communications, 2012, 424, 327-330.	2.1	13
26	Clinical Outcome 3 Years After Autologous Chondrocyte Implantation Does Not Correlate With the Expression of a Predefined Gene Marker Set in Chondrocytes Prior to Implantation but Is Associated With Critical Signaling Pathways. Orthopaedic Journal of Sports Medicine, 2014, 2, 232596711455078.	1.7	13
27	Highly Synchronized Expression of Lineage-Specific Genes during <i>In Vitro </i> Hepatic Differentiation of Human Pluripotent Stem Cell Lines. Stem Cells International, 2016, 2016, 1-22.	2.5	11
28	Comparative transcriptomics of hepatic differentiation of human pluripotent stem cells and adult human liver tissue. Physiological Genomics, 2017, 49, 430-446.	2.3	11
29	Cardiac hypertrophy in a dish: A human stem cell based model. Biology Open, 2020, 9, .	1.2	10
30	A data analysis framework for biomedical big data: Application on mesoderm differentiation of human pluripotent stem cells. PLoS ONE, 2017, 12, e0179613.	2.5	8
31	Enhanced xeno-free differentiation of hiPSC-derived astroglia applied in a blood–brain barrier model. Fluids and Barriers of the CNS, 2019, 16, 27.	5.0	8
32	Towards Creating the Perfect <i>In Vitro</i> Cell Model. Stem Cells International, 2016, 2016, 1-2.	2.5	7
33	Transcriptional sex and regional differences in paired human atrial and ventricular cardiac biopsies collected in vivo. Physiological Genomics, 2020, 52, 110-120.	2.3	7
34	Mapping of the JDL data fusion model to bioinformatics. , 2007, , .		5
35	Multi-Omics Characterization of a Human Stem Cell-Based Model of Cardiac Hypertrophy. Life, 2022, 12, 293.	2.4	5
36	Human Pluripotent Stem Cell-Derived Hepatocytes Show Higher Transcriptional Correlation with Adult Liver Tissue than with Fetal Liver Tissue. ACS Omega, 2020, 5, 4816-4827.	3.5	4

JANE SYNNERGREN

#	Article	IF	CITATIONS
37	Classification of information fusion methods in systems biology. In Silico Biology, 2009, 9, 65-76.	0.9	3
38	Comparative transcriptomic analysis identifies genes differentially expressed in human epicardial progenitors and hiPSC-derived cardiac progenitors. Physiological Genomics, 2016, 48, 771-784.	2.3	2
39	Multi-assignment clustering: Machine learning from a biological perspective. Journal of Biotechnology, 2021, 326, 1-10.	3.8	2
40	Data Mining Identifies CCN2 and THBS1 as Biomarker Candidates for Cardiac Hypertrophy. Life, 2022, 12, 726.	2.4	2
41	Interactive Visualization of Large-Scale Gene Expression Data. , 2016, , .		1
42	Unraveling the Metabolic Derangements Occurring in Non-infarcted Areas of Pig Hearts With Chronic Heart Failure. Frontiers in Cardiovascular Medicine, 2021, 8, 753470.	2.4	1
43	A data integration method for exploring gene regulatory mechanisms. , 2008, , .		0
44	Unraveling the Metabolic Derangements Occurring in Non-infarcted Areas of Pig Hearts With Chronic Heart Failure. Frontiers in Cardiovascular Medicine, 2021, 8, 753470.	2.4	0