In Hye Kwak

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9429917/in-hye-kwak-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

27	1,112 citations	17	29
papers		h-index	g-index
29	1,471 ext. citations	10.5	4.6
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
27	Concurrent Vacancy and Adatom Defects of MoNbSe Alloy Nanosheets Enhance Electrochemical Performance of Hydrogen Evolution Reaction. <i>ACS Nano</i> , 2021 , 15, 5467-5477	16.7	17
26	Chalcogen-vacancy group VI transition metal dichalcogenide nanosheets for electrochemical and photoelectrochemical hydrogen evolution. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 101-109	7.1	4
25	Anisotropic 2D SiAs for High-Performance UV-Visible Photodetectors. <i>Small</i> , 2021 , 17, e2006310	11	12
24	Phase-Transition MoVSe Alloy Nanosheets with Rich V-Se Vacancies and Their Enhanced Catalytic Performance of Hydrogen Evolution Reaction. <i>ACS Nano</i> , 2021 , 15, 14672-14682	16.7	7
23	Ruthenium Nanoparticles on Cobalt-Doped 1TtPhase MoS Nanosheets for Overall Water Splitting. <i>Small</i> , 2020 , 16, e2000081	11	41
22	Nickel sulfide nanocrystals for electrochemical and photoelectrochemical hydrogen generation. Journal of Materials Chemistry C, 2020 , 8, 3240-3247	7.1	10
21	Se-Rich MoSe Nanosheets and Their Superior Electrocatalytic Performance for Hydrogen Evolution Reaction. <i>ACS Nano</i> , 2020 , 14, 6295-6304	16.7	55
20	Anisotropic alloying of Re1\(\text{MoxS2} \) nanosheets to boost the electrochemical hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25131-25141	13	7
19	Adatom Doping of Transition Metals in ReSe Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution Reaction. <i>ACS Nano</i> , 2020 , 14, 12184-12194	16.7	21
18	Phase Evolution of ReMoSe Alloy Nanosheets and Their Enhanced Catalytic Activity toward Hydrogen Evolution Reaction. <i>ACS Nano</i> , 2020 , 14, 11995-12005	16.7	25
17	Two-dimensional MoS2Ehelamine hybrid nanostructures for enhanced catalytic hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22571-22578	13	8
16	GaAsSe Ternary Alloy Nanowires for Enhanced Photoconductivity. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 3908-3915	3.8	2
15	Nickel phosphide polymorphs with an active (001) surface as excellent catalysts for water splitting. <i>CrystEngComm</i> , 2019 , 21, 1143-1149	3.3	11
14	Two dimensional MoS meets porphyrins via intercalation to enhance the electrocatalytic activity toward hydrogen evolution. <i>Nanoscale</i> , 2019 , 11, 3780-3785	7.7	12
13	Intercalated complexes of 1T?-MoS2 nanosheets with alkylated phenylenediamines as excellent catalysts for electrochemical hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 2334-2343	13	21
12	Thickness-dependent bandgap and electrical properties of GeP nanosheets. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16526-16532	13	28
11	Intercalation of cobaltocene into WS2 nanosheets for enhanced catalytic hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8101-8106	13	18

LIST OF PUBLICATIONS

10	Two-dimensional MoS/Fe-phthalocyanine hybrid nanostructures as excellent electrocatalysts for hydrogen evolution and oxygen reduction reactions. <i>Nanoscale</i> , 2019 , 11, 14266-14275	7.7	20
9	Selective electrochemical reduction of carbon dioxide to formic acid using indiumlinc bimetallic nanocrystals. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22879-22883	13	25
8	Stable methylammonium-intercalated 1T?-MoS2 for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018 , 6, 5613-5617	13	27
7	Nitrogen-rich 1TUMoS layered nanostructures using alkyl amines for high catalytic performance toward hydrogen evolution. <i>Nanoscale</i> , 2018 , 10, 14726-14735	7.7	29
6	Two-Dimensional WS@Nitrogen-Doped Graphite for High-Performance Lithium Ion Batteries: Experiments and Molecular Dynamics Simulations. <i>ACS Applied Materials & Dynamics Simulations</i> , 10, 37	1928 ⁵ 37	79 3 8
5	Orthorhombic NiSe Nanocrystals on Si Nanowires for Efficient Photoelectrochemical Water Splitting. <i>ACS Applied Materials & Acs Applied & Ac</i>	9.5	29
4	Intercalation of aromatic amine for the 2H-1Tthase transition of MoS by experiments and calculations. <i>Nanoscale</i> , 2018 , 10, 11349-11356	7.7	41
3	FeP and FeP2 nanowires for efficient electrocatalytic hydrogen evolution reaction. <i>Chemical Communications</i> , 2016 , 52, 2819-22	5.8	208
2	CoSeland NiSelNanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting. <i>ACS Applied Materials & Company Interfaces</i> , 2016 , 8, 5327-34	9.5	334
1	Transition-Metal Doping of Oxide Nanocrystals for Enhanced Catalytic Oxygen Evolution. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 1921-1927	3.8	80