Jeotikanta Mohapatra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/94299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale, 2015, 7, 9174-9184.	5.6	203
2	Surface controlled synthesis of MFe ₂ O ₄ (M = Mn, Fe, Co, Ni and Zn) nanoparticles and their magnetic characteristics. CrystEngComm, 2013, 15, 524-532.	2.6	159
3	Verwey Transition in Ultrasmall-Sized Octahedral Fe ₃ O ₄ Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 19356-19362.	3.1	159
4	Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Applied Surface Science, 2018, 442, 332-341.	6.1	93
5	Size-dependent magnetic and inductive heating properties of Fe ₃ O ₄ nanoparticles: scaling laws across the superparamagnetic size. Physical Chemistry Chemical Physics, 2018, 20, 12879-12887.	2.8	92
6	Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance. Scientific Reports, 2016, 6, 35369.	3.3	83
7	Magnetic Nanoparticles: Synthesis, Anisotropy, and Applications. Chemical Reviews, 2023, 123, 3904-3943.	47.7	81
8	Visible light driven mesoporous Ag-embedded ZnO nanocomposites: reactive oxygen species enhanced photocatalysis, bacterial inhibition and photodynamic therapy. Dalton Transactions, 2017, 46, 685-696.	3.3	80
9	Inductive Thermal Effect of Ferrite Magnetic Nanoparticles. Materials, 2019, 12, 3208.	2.9	76
10	Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC Advances, 2016, 6, 23518-23524.	3.6	68
11	Superspin glass behavior of self-interacting CoFe2O4 nanoparticles. Journal of Alloys and Compounds, 2015, 628, 416-423.	5.5	64
12	Hard and semi-hard magnetic materials based on cobalt and cobalt alloys. Journal of Alloys and Compounds, 2020, 824, 153874.	5.5	61
13	Mesoporous iron oxide nanowires: synthesis, magnetic and photocatalytic properties. RSC Advances, 2016, 6, 90537-90546.	3.6	45
14	Large T1 contrast enhancement using superparamagnetic nanoparticles in ultra-low field MRI. Scientific Reports, 2018, 8, 11863.	3.3	43
15	A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis. Dalton Transactions, 2016, 45, 2454-2461.	3.3	39
16	Porous Fe3O4-SiO2 core-shell nanorods as high-performance MRI contrast agent and drug delivery vehicle. Journal of Magnetism and Magnetic Materials, 2017, 428, 340-347.	2.3	37
17	Enhancing the magnetic and inductive heating properties of Fe ₃ O ₄ nanoparticles via morphology control. Nanotechnology, 2020, 31, 275706.	2.6	35

18 Enhancement of magnetic heating efficiency in size controlled MFe₂O₄ (M =) Tj ETQq0 Q.0 rgBT /Qyerlock 10

#	Article	IF	CITATIONS
19	Influence of the Cu2ZnSnS4 nanoparticles size on solar cell performance. Solar Energy Materials and Solar Cells, 2019, 189, 125-132.	6.2	31
20	Coherent magnetization reversal and high magnetic coercivity in Co nanowire assemblies. Journal of Magnetism and Magnetic Materials, 2017, 438, 41-45.	2.3	29
21	Controlled synthesis and enhanced tunnelling magnetoresistance in oriented Fe ₃ O ₄ nanorod assemblies. Journal Physics D: Applied Physics, 2018, 51, 085002.	2.8	27
22	Large tunneling magnetoresistance in octahedral Fe3O4 nanoparticles. AIP Advances, 2016, 6, .	1.3	26
23	Exchange Coupling in Soft Magnetic Nanostructures and Its Direct Effect on Their Theranostic Properties. ACS Applied Materials & Interfaces, 2018, 10, 27233-27243.	8.0	26
24	Size-dependent magnetic hardening in CoFe ₂ O ₄ nanoparticles: effects of surface spin canting. Journal Physics D: Applied Physics, 2020, 53, 504004.	2.8	25
25	Rare-Earth-Free Permanent Magnets: The Past and Future. Handbook of Magnetic Materials, 2018, 27, 1-57.	0.6	24
26	X-ray excited luminescence and persistent luminescence of Sr2MgSi2O7:Eu2+, Dy3+ and their associations with synthesis conditions. Journal of Luminescence, 2018, 198, 132-137.	3.1	23
27	Extraordinary Magnetic Hardening in Nanowire Assemblies: the Geometry and Proximity Effects. Advanced Functional Materials, 2021, 31, 2010157.	14.9	23
28	Octahedral-Shaped Fe ₃ O ₄ Nanoparticles With Enhanced Specific Absorption Rate and <inline-formula> <tex-math notation="LaTeX">\${R}_{2}\$ </tex-math></inline-formula> Relaxivity. IEEE Transactions on Magnetics, 2015, 51, 1-3.	2.1	22
29	Giant exchange bias and its angular dependence in Co/CoO core-shell nanowire assemblies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2092-2096.	2.1	22
30	Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange. AIP Advances, 2018, 8, 056725.	1.3	19
31	Magnetic-field-induced self-assembly of FeCo/CoFe ₂ O ₄ core/shell nanoparticles with tunable collective magnetic properties. Nanoscale, 2021, 13, 4519-4529.	5.6	16
32	Iron-based magnetic nanoparticles for multimodal hyperthermia heating. Journal of Alloys and Compounds, 2021, 871, 159475.	5.5	16
33	Ferromagnetism in 2D α-Fe2O3 nanosheets. Applied Physics Letters, 2021, 118, .	3.3	15
34	Structural, morphological and magnetic properties of compositionally modulated CoNi nanowires. Journal of Alloys and Compounds, 2021, 864, 158123.	5.5	12
35	High-Temperature Magnetic Properties of Exchange-Coupled Sm-Co/Nd-Fe-B Hybrid Nanocomposite Magnets. IEEE Magnetics Letters, 2018, 9, 1-4.	1.1	11
36	Complex Oxides Based on Silver, Bismuth, and Tungsten: Syntheses, Characterization, and Photoelectrochemical Behavior. Journal of Physical Chemistry C, 2018, 122, 13473-13480.	3.1	11

JEOTIKANTA ΜΟΗΑΡΑΤΓΑ

#	Article	IF	CITATIONS
37	Defect-related blue emission from ultra-fine Zn1â^'xCd x S quantum dots synthesized by simple beaker chemistry. International Nano Letters, 2013, 3, 1.	5.0	10
38	Exchange bias and Verwey transition in Fe ₅ C ₂ /Fe ₃ O ₄ core/shell nanoparticles. Nanoscale, 2021, 13, 15837-15843.	5.6	9
39	Enhanced coercivity in Co-doped α-Fe2O3 cubic nanocrystal assemblies prepared via a magnetic field-assisted hydrothermal synthesis. AIP Advances, 2017, 7, .	1.3	7
40	Magnetic properties of nickel carbide nanoparticles with enhanced coercivity. AIP Advances, 2018, 8, 056308.	1.3	7
41	Magnetic and Mössbauer Effect Study of Ca-Sc Co-doped M-Type Strontium Hexaferrite. Journal of Superconductivity and Novel Magnetism, 2021, 34, 2551-2564.	1.8	7
42	The exclusive response of LSPR in uncapped gold nanoparticles towards silver ions and gold chloride ions. RSC Advances, 2016, 6, 109192-109200.	3.6	6
43	Engineering Magnetic and Tunneling Magnetoresistance Properties of Co _x Fe _{3â^xx} O ₄ Nanorods. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700505.	1.8	6
44	Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots. Journal of Colloid and Interface Science, 2018, 514, 452-458.	9.4	6
45	Coercivity limits in nanoscale ferromagnets. Physical Review B, 2022, 105, .	3.2	6
46	Cleaning of magnetic nanoparticle surfaces via cold plasmas treatments. AIP Advances, 2017, 7, 056233.	1.3	5
47	Effects of packing density on the magnetic properties of cobalt nanowire assemblies. AIP Advances, 2019, 9, .	1.3	5
48	Novel Molten Salt Assisted Autocombustion Method for the Synthesis of Aluminum-Doped SrFe <i>_{12â^x}</i> Al <i>_x</i> O ₁₉ Hexaferrite Nanoparticles. Journal of Nanoscience and Nanotechnology, 2020, 20, 7735-7742.	0.9	5
49	Tuning the Observability of Surface Plasmon in Silica–Gold Raspberry Shaped Nanoparticles Using Cuprous Oxide Shell. ACS Applied Materials & Interfaces, 2013, 5, 12268-12274.	8.0	4
50	Surface controlled magnetic properties of Fe[sub 3]O[sub 4] nanoparticles. AIP Conference Proceedings, 2013, , .	0.4	4
51	Cerium-based <i>R</i> Co ₅ (<i>R</i> = Ce, La _{0.35} Ce _{0.65} , and) Tj ETQq1 091108.	1 0.78431 5.1	4 rgBT /Ove 4
52	Morphology controlled synthesis of ZnO nanostructures through a mild-thermal decomposition. , 2013, , .		1
53	Electrochemical capacitive properties of Mn[sub 3]O[sub 4] nanoparticles and reduced graphene oxide composite. , 2013, , .		0
54	Electrochemical capacitance properties of Mn[sub 3]O[sub 4] nanoparticles via energy efficient thermolysis. , 2013, , .		0

#	Article	IF	CITATIONS
55	Interaction of graphene quantum dots with bulk semiconductor surfaces. AIP Conference Proceedings, 2015, , .	0.4	0