Johanna Baehr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9429838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Higherâ€resolution Version of the Max Planck Institute Earth System Model (MPIâ€ESM1.2â€HR). Journal of Advances in Modeling Earth Systems, 2018, 10, 1383-1413.	3.8	272
2	Current and Emerging Developments in Subseasonal to Decadal Prediction. Bulletin of the American Meteorological Society, 2020, 101, E869-E896.	3.3	116
3	Seasonal Predictability over Europe Arising from El Niño and Stratospheric Variability in the MPI-ESM Seasonal Prediction System. Journal of Climate, 2015, 28, 256-271.	3.2	100
4	The Climateâ€system Historical Forecast Project: do stratosphereâ€resolving models make better seasonal climate predictions in boreal winter?. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 1413-1427.	2.7	91
5	Forecast skill of multiâ€year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophysical Research Letters, 2012, 39, .	4.0	67
6	Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating. Climate Dynamics, 2017, 48, 3547-3563.	3.8	62
7	The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model. Climate Dynamics, 2015, 44, 2723-2735.	3.8	55
8	Improved Teleconnectionâ€Based Dynamical Seasonal Predictions of Boreal Winter. Geophysical Research Letters, 2018, 45, 3605-3614.	4.0	55
9	Tropical rainfall predictions from multiple seasonal forecast systems. International Journal of Climatology, 2019, 39, 974-988.	3.5	45
10	Observed and simulated variability of the AMOC at 26°N and 41°N. Geophysical Research Letters, 2013, 40, 1159-1164.	4.0	40
11	Detection and Attribution of Climate Change Signal in Ocean Wind Waves. Journal of Climate, 2015, 28, 1578-1591.	3.2	40
12	Seasonal climate forecasts significantly affected by observational uncertainty of Arctic sea ice concentration. Geophysical Research Letters, 2016, 43, 852-859.	4.0	37
13	Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nature Climate Change, 2022, 12, 263-270.	18.8	37
14	The German Climate Forecast System: GCFS. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002101.	3.8	30
15	Initialization and Ensemble Generation for Decadal Climate Predictions: A Comparison of Different Methods. Journal of Advances in Modeling Earth Systems, 2019, 11, 149-172.	3.8	28
16	Assimilation of oceanic observations in a global coupled Earth system model with the SEIK filter. Ocean Modelling, 2015, 96, 254-264.	2.4	27
17	Unraveling the choice of the north Atlantic subpolar gyre index. Scientific Reports, 2020, 10, 1005.	3.3	27
18	Atlantic Ocean Heat Transport Influences Interannual-to-Decadal Surface Temperature Predictability in the North Atlantic Region. Journal of Climate, 2018, 31, 6763-6782.	3.2	25

Johanna Baehr

#	Article	IF	CITATIONS
19	Full-field initialized decadal predictions with the MPI earth system model: an initial shock in the North Atlantic. Climate Dynamics, 2018, 51, 2593-2608.	3.8	23
20	A universal Standardized Precipitation Index candidate distribution function for observations and simulations. Hydrology and Earth System Sciences, 2020, 24, 4541-4565.	4.9	23
21	Preserving the coupled atmosphere–ocean feedback in initializations of decadal climate predictions. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e637.	8.1	22
22	Ensemble initialization of the oceanic component of a coupled model through bred vectors at seasonal-to-interannual timescales. Geoscientific Model Development, 2014, 7, 453-461.	3.6	22
23	Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts. Climate Dynamics, 2018, 51, 1947-1970.	3.8	20
24	Coastal Erosion Variability at the Southern Laptev Sea Linked to Winter Sea Ice and the Arctic Oscillation. Geophysical Research Letters, 2020, 47, e2019GL086876.	4.0	20
25	Predictability of Multiyear Trends of the Pacific Decadal Oscillation in an MPIâ€ESM Hindcast Ensemble. Geophysical Research Letters, 2019, 46, 318-325.	4.0	18
26	Stratospheric influence on North Atlantic marine cold air outbreaks following sudden stratospheric warming events. Weather and Climate Dynamics, 2020, 1, 541-553.	3.5	17
27	Decadal Predictions of the Probability of Occurrence for Warm Summer Temperature Extremes. Geophysical Research Letters, 2019, 46, 14042-14051.	4.0	16
28	Forecastâ€Oriented Assessment of Decadal Hindcast Skill for North Atlantic SST. Geophysical Research Letters, 2019, 46, 11444-11454.	4.0	15
29	Atlantic Inflow to the North Sea Modulated by the Subpolar Gyre in a Historical Simulation With MPlâ€ESM. Journal of Geophysical Research: Oceans, 2019, 124, 1807-1826.	2.6	15
30	Seasonal predictability of European summer climate re-assessed. Climate Dynamics, 2019, 53, 3039-3056.	3.8	15
31	Improved Seasonal Prediction of European Summer Temperatures With New Five‣ayer Soilâ€Hydrology Scheme. Geophysical Research Letters, 2018, 45, 346-353.	4.0	14
32	Linking Ocean Forcing and Atmospheric Interactions to Atlantic Multidecadal Variability in MPI SM1.2. Geophysical Research Letters, 2020, 47, e2020GL087259.	4.0	14
33	Skilful prediction of cod stocks in the North and Barents Sea a decade in advance. Communications Earth & Environment, 2021, 2, .	6.8	14
34	Potential Predictability of the North Atlantic Heat Transport Based on an Oceanic State Estimate. Journal of Climate, 2012, 25, 8475-8486.	3.2	11
35	Atmospheric pathway between Atlantic multidecadal variability and European summer temperature in the atmospheric general circulation model ECHAM6. Climate Dynamics, 2019, 53, 209-224.	3.8	8
36	Interactive 3-D visual analysis of ERA5 data: improving diagnostic indices for marine cold air outbreaks and polar lows. Weather and Climate Dynamics, 2021, 2, 867-891.	3.5	7

Johanna Baehr

#	Article	IF	CITATIONS
37	Response to Comment on "Multiyear Prediction of Monthly Mean Atlantic Meridional Overturning Circulation at 26.5°N― Science, 2012, 338, 604-604.	12.6	6
38	Impact of Decadal Trends in the Surface Climate of the North Atlantic Subpolar Gyre on the Marine Environment of the Barents Sea. Frontiers in Marine Science, 2022, 8, .	2.5	6
39	Predictors and prediction skill for marine coldâ€∎ir outbreaks over the Barents Sea. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 2638-2656.	2.7	5
40	Skilful Seasonal Prediction of Ocean Surface Waves in the Atlantic Ocean. Geophysical Research Letters, 2019, 46, 1731-1739.	4.0	4
41	When Does the Lorenz 1963 Model Exhibit the Signalâ€Toâ€Noise Paradox?. Geophysical Research Letters, 2021, 48, e2020GL089283.	4.0	4
42	On the Origin of Discrepancies Between Observed and Simulated Memory of Arctic Sea Ice. Geophysical Research Letters, 2021, 48, e2020GL091784.	4.0	4
43	Exploring the Potential of Forecasting Fish Distributions in the North East Atlantic With a Dynamic Earth System Model, Exemplified by the Suitable Spawning Habitat of Blue Whiting. Frontiers in Marine Science, 2022, 8, .	2.5	4
44	Skill assessment of different ensemble generation schemes for retrospective predictions of surface freshwater fluxes on inter and multi-annual timescales. Meteorologische Zeitschrift, 2018, 27, 111-124.	1.0	3
45	Simulations of a Line W-based observing system for the Atlantic meridional overturning circulation. Ocean Dynamics, 2013, 63, 865-880.	2.2	2
46	Improving seasonal predictions of meteorological drought by conditioning on ENSO states. Environmental Research Letters, 2021, 16, 094027.	5.2	2
47	Can Environmental Conditions at North Atlantic Deep-Sea Habitats Be Predicted Several Years Ahead? ——Taking Sponge Habitats as an Example. Frontiers in Marine Science, 2021, 8, .	2.5	2
48	Comparing forecast systems with multiple correlation decomposition based on partial correlation. Advances in Statistical Climatology, Meteorology and Oceanography, 2020, 6, 103-113.	0.9	2
49	Self-Organizing Maps Identify Windows of Opportunity for Seasonal European Summer Predictions. Frontiers in Climate, 2022, 4, .	2.8	2
50	Seasonal climate predictions for marine risk assessment in the Barents Sea. Climate Services, 2022, 26, 100291.	2.5	2
51	Limitations of the potential predictability of meridional mass and heat transports in the North Atlantic. Geophysical Research Letters, 2014, 41, 4270-4276.	4.0	1
52	Subtle influence of the Atlantic Meridional Overturning CirculationÂ(AMOC) on seasonal sea surface temperature (SST) hindcast skill in the North Atlantic. Weather and Climate Dynamics, 2021, 2, 739-757.	3.5	1
53	Forecast opportunities for European summer climate ensemble predictions using Self-Organising Maps. , 2020, , .		1
54	Nonlocal and local wind forcing dependence of the Atlantic meridional overturning circulation and its depth scale. Ocean Science, 2022, 18, 979-996.	3.4	0