Katrina M Waters

List of Publications by Citations

Source: https://exaly.com/author-pdf/9429669/katrina-m-waters-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 146 7,398 47 h-index g-index citations papers 6.1 9,076 5.26 150 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
146	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. <i>Nature Biotechnology</i> , 2016 , 34, 828-837	44.5	1566
145	Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. <i>PLoS Pathogens</i> , 2010 , 6, e1000719	7.6	302
144	Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. <i>MBio</i> , 2013 , 4,	7.8	204
143	Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses. <i>MBio</i> , 2014 , 5, e01174-14	7.8	199
142	Macrophage responses to silica nanoparticles are highly conserved across particle sizes. <i>Toxicological Sciences</i> , 2009 , 107, 553-69	4.4	187
141	Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics. <i>Journal of Proteome Research</i> , 2015 , 14, 1993-2001	5.6	141
140	Comparative developmental toxicity of environmentally relevant oxygenated PAHs. <i>Toxicology and Applied Pharmacology</i> , 2013 , 271, 266-75	4.6	138
139	Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. <i>Bioinformatics</i> , 2008 , 24, 2894-900	7.2	108
138	How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology. <i>Toxicological Sciences</i> , 2017 , 155, 326-336	4.4	105
137	Polycyclic aromatic hydrocarbons as skin carcinogens: comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse. <i>Toxicology and Applied Pharmacology</i> , 2012 , 264, 377-86	4.6	105
136	MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome. <i>American Journal of Human Genetics</i> , 2017 , 100, 843-853	11	104
135	The Undiagnosed Diseases Network: Accelerating Discovery about Health and Disease. <i>American Journal of Human Genetics</i> , 2017 , 100, 185-192	11	102
134	MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E1012-E1021	11.5	100
133	MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis. MBio, 2017, 8,	7.8	99
132	Differential gene expression in response to methoxychlor and estradiol through ERalpha, ERbeta, and AR in reproductive tissues of female mice. <i>Toxicological Sciences</i> , 2001 , 63, 47-56	4.4	98
131	Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells. <i>Journal of Virology</i> , 2013 , 87, 3885-902	6.6	97
130	Comparative proteomics and pulmonary toxicity of instilled single-walled carbon nanotubes, crocidolite asbestos, and ultrafine carbon black in mice. <i>Toxicological Sciences</i> , 2011 , 120, 123-35	4.4	96

129	Insulin and dietary fructose induce stearoyl-CoA desaturase 1 gene expression of diabetic mice Journal of Biological Chemistry, 1994 , 269, 27773-27777	5.4	95	
128	Insulin and dietary fructose induce stearoyl-CoA desaturase 1 gene expression of diabetic mice. Journal of Biological Chemistry, 1994 , 269, 27773-7	5.4	85	
127	Data merging for integrated microarray and proteomic analysis. <i>Briefings in Functional Genomics & Proteomics</i> , 2006 , 5, 261-72		82	
126	Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 4579-86	10.3	76	
125	Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis. <i>MSphere</i> , 2017 , 2,	5	71	
124	Estrogen regulation of a transforming growth factor-beta inducible early gene that inhibits deoxyribonucleic acid synthesis in human osteoblasts. <i>Endocrinology</i> , 1998 , 139, 1346-53	4.8	71	
123	Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data. <i>Journal of Proteome Research</i> , 2010 , 9, 5748-56	5.6	69	
122	Host regulatory network response to infection with highly pathogenic H5N1 avian influenza virus. <i>Journal of Virology</i> , 2011 , 85, 10955-67	6.6	69	
121	Estrogen regulation of human osteoblast function is determined by the stage of differentiation and the estrogen receptor isoform. <i>Journal of Cellular Biochemistry</i> , 2001 , 83, 448-62	4.7	68	
120	Overexpression of a nuclear protein, TIEG, mimics transforming growth factor-beta action in human osteoblast cells. <i>Journal of Biological Chemistry</i> , 2000 , 275, 20255-9	5.4	67	
119	A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3. <i>American Journal of Human Genetics</i> , 2017 , 100, 128-137	11	65	
118	AHR2 mutant reveals functional diversity of aryl hydrocarbon receptors in zebrafish. <i>PLoS ONE</i> , 2012 , 7, e29346	3.7	64	
117	Improved quality control processing of peptide-centric LC-MS proteomics data. <i>Bioinformatics</i> , 2011 , 27, 2866-72	7.2	64	
116	Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish. <i>Toxicology and Applied Pharmacology</i> , 2013 , 272, 656-70	4.6	63	
115	MicroRNAs control neurobehavioral development and function in zebrafish. <i>FASEB Journal</i> , 2012 , 26, 1452-61	0.9	63	
114	A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments. <i>Proteomics</i> , 2013 , 13, 493-503	4.8	60	
113	Multi-platform TOmics Analysis of Human Ebola Virus Disease Pathogenesis. <i>Cell Host and Microbe</i> , 2017 , 22, 817-829.e8	23.4	57	
112	Implications of Bioremediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soils for Human Health and Cancer Risk. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	55	

111	Surface functionalities of gold nanoparticles impact embryonic gene expression responses. <i>Nanotoxicology</i> , 2013 , 7, 192-201	5.3	55
110	A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors. <i>Proteomics</i> , 2011 , 11, 4736-41	4.8	55
109	A network integration approach to predict conserved regulators related to pathogenicity of influenza and SARS-CoV respiratory viruses. <i>PLoS ONE</i> , 2013 , 8, e69374	3.7	54
108	Regulation of hepatic stearoyl-CoA desaturase gene 1 by vitamin A. <i>Biochemical and Biophysical Research Communications</i> , 1997 , 231, 206-10	3.4	53
107	Silicone wristbands compared with traditional polycyclic aromatic hydrocarbon exposure assessment methods. <i>Analytical and Bioanalytical Chemistry</i> , 2018 , 410, 3059-3071	4.4	52
106	Polyunsaturated fatty acids inhibit hepatic stearoyl-CoA desaturase-1 gene in diabetic mice. <i>Lipids</i> , 1996 , 31 Suppl, S33-6	1.6	50
105	Combination Attenuation Offers Strategy for Live Attenuated Coronavirus Vaccines. <i>Journal of Virology</i> , 2018 , 92,	6.6	48
104	Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns. <i>Nanotoxicology</i> , 2014 , 8, 533-48	5.3	48
103	Discovery of novel glucose-regulated proteins in isolated human pancreatic islets using LC-MS/MS-based proteomics. <i>Journal of Proteome Research</i> , 2012 , 11, 3520-32	5.6	48
102	Localization of a polyunsaturated fatty acid response region in stearoyl-CoA desaturase gene 1. <i>Lipids and Lipid Metabolism</i> , 1997 , 1349, 33-42		48
101	Integrated Omics Analysis of Pathogenic Host Responses during Pandemic H1N1 Influenza Virus Infection: The Crucial Role of Lipid Metabolism. <i>Cell Host and Microbe</i> , 2016 , 19, 254-66	23.4	47
100	Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis. <i>BMC Systems Biology</i> , 2012 , 6, 28	3.5	47
99	The effect of inhibition of PP1 and TNFBignaling on pathogenesis of SARS coronavirus. <i>BMC Systems Biology</i> , 2016 , 10, 93	3.5	45
98	Comparative iron oxide nanoparticle cellular dosimetry and response in mice by the inhalation and liquid cell culture exposure routes. <i>Particle and Fibre Toxicology</i> , 2014 , 11, 46	8.4	45
97	Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder. <i>American Journal of Human Genetics</i> , 2018 , 102, 494-504	11	44
96	Ligand-Specific Transcriptional Mechanisms Underlie Aryl Hydrocarbon Receptor-Mediated Developmental Toxicity of Oxygenated PAHs. <i>Toxicological Sciences</i> , 2015 , 147, 397-411	4.4	43
95	Systems virology identifies a mitochondrial fatty acid oxidation enzyme, dodecenoyl coenzyme A delta isomerase, required for hepatitis C virus replication and likely pathogenesis. <i>Journal of Virology</i> , 2011 , 85, 11646-54	6.6	42
94	Enabling high-throughput data management for systems biology: the Bioinformatics Resource Manager. <i>Bioinformatics</i> , 2007 , 23, 906-9	7.2	42

(1997-2008)

93	A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics. <i>Bioinformatics</i> , 2008 , 24, 1503-9	7.2	40
92	IRF2BPL Is Associated with Neurological Phenotypes. <i>American Journal of Human Genetics</i> , 2018 , 103, 245-260	11	39
91	Discovery of common chemical exposures across three continents using silicone wristbands. <i>Royal Society Open Science</i> , 2019 , 6, 181836	3.3	38
90	A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics. <i>Bioinformatics</i> , 2010 , 26, 1677-83	7.2	37
89	Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish. <i>Toxicology and Applied Pharmacology</i> , 2016 , 308, 32-45	4.6	36
88	A comprehensive iterative approach is highly effective in diagnosing individuals who are exome negative. <i>Genetics in Medicine</i> , 2019 , 21, 161-172	8.1	36
87	Estrogen receptor isoform-specific induction of progesterone receptors in human osteoblasts. Journal of Bone and Mineral Research, 2002 , 17, 580-92	6.3	36
86	Ion Mobility Spectrometry and the Omics: Distinguishing Isomers, Molecular Classes and Contaminant Ions in Complex Samples. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 116, 292-299	14.6	35
85	A comprehensive collection of systems biology data characterizing the host response to viral infection. <i>Scientific Data</i> , 2014 , 1, 140033	8.2	35
84	Relative Influence of Trans-Pacific and Regional Atmospheric Transport of PAHs in the Pacific Northwest, U.S. <i>Environmental Science & Environmental S</i>	10.3	34
83	Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems. <i>BMC Systems Biology</i> , 2011 , 5, 190	3.5	34
82	Bone growth and turnover in progesterone receptor knockout mice. <i>Endocrinology</i> , 2008 , 149, 2383-90	4.8	33
81	Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling. <i>Journal of Natural Products</i> , 2015 , 78, 1990-2000	4.9	32
80	Global gene expression analysis reveals pathway differences between teratogenic and non-teratogenic exposure concentrations of bisphenol A and 17Estradiol in embryonic zebrafish. <i>Reproductive Toxicology</i> , 2013 , 38, 89-101	3.4	32
79	Network analysis of epidermal growth factor signaling using integrated genomic, proteomic and phosphorylation data. <i>PLoS ONE</i> , 2012 , 7, e34515	3.7	32
78	Effect of Native American fish smoking methods on dietary exposure to polycyclic aromatic hydrocarbons and possible risks to human health. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 6899-906	5.7	31
77	Proteome and computational analyses reveal new insights into the mechanisms of hepatitis C virus-mediated liver disease posttransplantation. <i>Hepatology</i> , 2012 , 56, 28-38	11.2	31
76	Localization of a negative thyroid hormone-response region in hepatic stearoyl-CoA desaturase gene 1. <i>Biochemical and Biophysical Research Communications</i> , 1997 , 233, 838-43	3.4	31

75	Plasma lipidome reveals critical illness and recovery from human Ebola virus disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 3919-3928	11.5	31
74	Association of carcinogenic polycyclic aromatic hydrocarbon emissions and smoking with lung cancer mortality rates on a global scale. <i>Environmental Science & Environmental S</i>	10.3	30
73	Controlling the response: predictive modeling of a highly central, pathogen-targeted core response module in macrophage activation. <i>PLoS ONE</i> , 2011 , 6, e14673	3.7	30
72	Bayesian proteoform modeling improves protein quantification of global proteomic measurements. <i>Molecular and Cellular Proteomics</i> , 2014 , 13, 3639-46	7.6	29
71	The mammary epithelial cell secretome and its regulation by signal transduction pathways. <i>Journal of Proteome Research</i> , 2008 , 7, 558-69	5.6	29
70	Expanding the Spectrum of BAF-Related Disorders: De Novo Variants in SMARCC2 Cause a Syndrome with Intellectual Disability and Developmental Delay. <i>American Journal of Human Genetics</i> , 2019 , 104, 164-178	11	27
69	MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling. <i>Analyst, The</i> , 2017 , 142, 442-448	5	26
68	Direct action of naturally occurring estrogen metabolites on human osteoblastic cells. <i>Journal of Bone and Mineral Research</i> , 2000 , 15, 499-506	6.3	26
67	Identifying efficacious approaches to chemoprevention with chlorophyllin, purified chlorophylls and freeze-dried spinach in a mouse model of transplacental carcinogenesis. <i>Carcinogenesis</i> , 2009 , 30, 315-20	4.6	26
66	Coupling Genome-wide Transcriptomics and Developmental Toxicity Profiles in Zebrafish to Characterize Polycyclic Aromatic Hydrocarbon (PAH) Hazard. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	24
65	Transplacental carcinogenesis with dibenzo[def,p]chrysene (DBC): timing of maternal exposures determines target tissue response in offspring. <i>Cancer Letters</i> , 2012 , 317, 49-55	9.9	24
64	A Recurrent De Novo Variant in NACC1 Causes a Syndrome Characterized by Infantile Epilepsy, Cataracts, and Profound Developmental Delay. <i>American Journal of Human Genetics</i> , 2017 , 100, 343-357	11	23
63	A Statistical Analysis of the Effects of Urease Pre-treatment on the Measurement of the Urinary Metabolome by Gas Chromatography-Mass Spectrometry. <i>Metabolomics</i> , 2014 , 10, 897-908	4.7	23
62	Integrative transcriptomic and proteomic analysis of osteocytic cells exposed to fluid flow reveals novel mechano-sensitive signaling pathways. <i>Journal of Biomechanics</i> , 2014 , 47, 1838-45	2.9	23
61	Annexin A2 modulates radiation-sensitive transcriptional programming and cell fate. <i>Radiation Research</i> , 2013 , 179, 53-61	3.1	21
60	Bioinformatics Resource Manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools. <i>BMC Bioinformatics</i> , 2012 , 13, 311	3.6	21
59	Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse. <i>Toxicology and Applied Pharmacology</i> , 2015 , 287, 149-160	4.6	20
58	Mechanism-Based Classification of PAH Mixtures to Predict Carcinogenic Potential. <i>Toxicological Sciences</i> , 2015 , 146, 135-45	4.4	18

57	Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation. <i>PLoS ONE</i> , 2010 , 5, e14152	3.7	18	
56	Specific mutations in H5N1 mainly impact the magnitude and velocity of the host response in mice. <i>BMC Systems Biology</i> , 2013 , 7, 69	3.5	17	
55	Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists. <i>Reproductive Toxicology</i> , 2018 , 77, 80-93	3.4	16	•
54	Quantitative phosphoproteomics identifies filaggrin and other targets of ionizing radiation in a human skin model. <i>Experimental Dermatology</i> , 2012 , 21, 352-7	4	16	
53	Genetic and epigenetic changes in chromosomally stable and unstable progeny of irradiated cells. <i>PLoS ONE</i> , 2014 , 9, e107722	3.7	16	
52	Quantitative phosphoproteome analysis of lysophosphatidic acid induced chemotaxis applying dual-step (18)O labeling coupled with immobilized metal-ion affinity chromatography. <i>Journal of Proteome Research</i> , 2008 , 7, 4215-24	5.6	16	
51	Cell type-dependent gene transcription profile in a three-dimensional human skin tissue model exposed to low doses of ionizing radiation: implications for medical exposures. <i>Environmental and Molecular Mutagenesis</i> , 2012 , 53, 247-59	3.2	15	
50	pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data. <i>Journal of Proteome Research</i> , 2019 , 18, 1418-1425	5.6	15	
49	Accumulation of CD11b+Gr-1+ cells in the lung, blood and bone marrow of mice infected with highly pathogenic H5N1 and H1N1 influenza viruses. <i>Archives of Virology</i> , 2013 , 158, 1305-22	2.6	14	
48	Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin. <i>Toxicology and Applied Pharmacology</i> , 2013 , 267, 137-48	4.6	14	
47	ERK oscillation-dependent gene expression patterns and deregulation by stress response. <i>Chemical Research in Toxicology</i> , 2014 , 27, 1496-503	4	13	
46	Quantitative proteomic analysis of mitochondrial proteins reveals prosurvival mechanisms in the perpetuation of radiation-induced genomic instability. <i>Free Radical Biology and Medicine</i> , 2012 , 53, 618-	· 2 78 ⁸	13	
45	Cellular dichotomy between anchorage-independent growth responses to bFGF and TPA reflects molecular switch in commitment to carcinogenesis. <i>Molecular Carcinogenesis</i> , 2009 , 48, 1059-69	5	13	
44	DNA microarray analysis reveals a role for lysophosphatidic acid in the regulation of anti-inflammatory genes in MC3T3-E1 cells. <i>Bone</i> , 2007 , 41, 833-41	4.7	13	
43	Hepatic leukemia factor promotes resistance to cell death: implications for therapeutics and chronotherapy. <i>Toxicology and Applied Pharmacology</i> , 2013 , 268, 141-8	4.6	12	
42	A Community-Based Approach to Developing a Mobile Device for Measuring Ambient Air Exposure, Location, and Respiratory Health. <i>Environmental Justice</i> , 2015 , 8, 126-134	1.7	12	
41	Toxicokinetics of benzo[a]pyrene in humans: Extensive metabolism as determined by UPLC-accelerator mass spectrometry following oral micro-dosing. <i>Toxicology and Applied Pharmacology</i> , 2019 , 364, 97-105	4.6	12	
40	Development of an environmental health tool linking chemical exposures, physical location and lung function. <i>BMC Public Health</i> , 2019 , 19, 854	4.1	11	

39	Retinoic acid-dependent regulation of miR-19 expression elicits vertebrate axis defects. <i>FASEB Journal</i> , 2013 , 27, 4866-76	0.9	11
38	Influenza-Omics and the Host Response: Recent Advances and Future Prospects. <i>Pathogens</i> , 2017 , 6,	4.5	11
37	The effects of low-dose irradiation on inflammatory response proteins in a 3D reconstituted human skin tissue model. <i>Radiation Research</i> , 2012 , 178, 591-9	3.1	10
36	Impaired transcriptional response of the murine heart to cigarette smoke in the setting of high fat diet and obesity. <i>Chemical Research in Toxicology</i> , 2013 , 26, 1034-42	4	10
35	The multi-dimensional embryonic zebrafish platform predicts flame retardant bioactivity. <i>Reproductive Toxicology</i> , 2020 , 96, 359-369	3.4	10
34	Bi-allelic Variants in TONSL Cause SPONASTRIME Dysplasia and a Spectrum of Skeletal Dysplasia Phenotypes. <i>American Journal of Human Genetics</i> , 2019 , 104, 422-438	11	10
33	The Role of EGFR in Influenza Pathogenicity: Multiple Network-Based Approaches to Identify a Key Regulator of Non-lethal Infections. <i>Frontiers in Cell and Developmental Biology</i> , 2019 , 7, 200	5.7	9
32	Sequential projection pursuit principal component analysisdealing with missing data associated with new-omics technologies. <i>BioTechniques</i> , 2013 , 54, 165-8	2.5	9
31	Regulation of gene expression and subcellular protein distribution in MLO-Y4 osteocytic cells by lysophosphatidic acid: Relevance to dendrite outgrowth. <i>Bone</i> , 2011 , 48, 1328-35	4.7	9
30	Data integration reveals key homeostatic mechanisms following low dose radiation exposure. <i>Toxicology and Applied Pharmacology</i> , 2015 , 285, 1-11	4.6	8
29	Heterozygous variants in MYBPC1 are associated with an expanded neuromuscular phenotype beyond arthrogryposis. <i>Human Mutation</i> , 2019 , 40, 1115-1126	4.7	7
28	Indoor versus Outdoor Air Quality during Wildfires. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 696-701	11	7
27	Dibenzo[def,p]chrysene transplacental carcinogenesis in wild-type, Cyp1b1 knockout, and CYP1B1 humanized mice. <i>Molecular Carcinogenesis</i> , 2017 , 56, 163-171	5	6
26	IgG4-related disease: Association with a rare gene variant expressed in cytotoxic T cells. <i>Molecular Genetics & Manager Genetics & Molecular Genetics & G</i>	2.3	6
25	Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin. <i>Toxicology and Applied Pharmacology</i> , 2013 , 267, 192-9	4.6	6
24	Early life stage trimethyltin exposure induces ADP-ribosylation factor expression and perturbs the vascular system in zebrafish. <i>Toxicology</i> , 2012 , 302, 129-39	4.4	6
23	Statistically Driven Metabolite and Lipid Profiling of Patients from the Undiagnosed Diseases Network. <i>Analytical Chemistry</i> , 2020 , 92, 1796-1803	7.8	6
22	The landscape of viral proteomics and its potential to impact human health. <i>Expert Review of Proteomics</i> , 2016 , 13, 579-91	4.2	6

(2021-2019)

21	Bioinformatics Resource Manager: a systems biology web tool for microRNA and omics data integration. <i>BMC Bioinformatics</i> , 2019 , 20, 255	3.6	5
20	Proteomic analysis reveals down-regulation of surfactant protein B in murine type II pneumocytes infected with influenza A virus. <i>Virology</i> , 2015 , 483, 96-107	3.6	5
19	An approach for calculating a confidence interval from a single aquatic sample for monitoring hydrophobic organic contaminants. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 2888-92	3.8	5
18	Magnetic Resonance Imaging characteristics in case of TOR1AIP1 muscular dystrophy. <i>Clinical Imaging</i> , 2019 , 58, 108-113	2.7	4
17	Quantitative Proteomic Profiling of Low-Dose Ionizing Radiation Effects in a Human Skin Model. <i>Proteomes</i> , 2014 , 2, 382-398	4.6	4
16	Direct detection of soil mRNAs using targeted microarrays for genes associated with lignin degradation. <i>Soil Biology and Biochemistry</i> , 2010 , 42, 1793-1799	7.5	4
15	An Extensible, Scalable Architecture for Managing Bioinformatics Data and Analyses 2008,		4
14	A resource of lipidomics and metabolomics data from individuals with undiagnosed diseases. <i>Scientific Data</i> , 2021 , 8, 114	8.2	4
13	Time-dependent behavioral data from zebrafish reveals novel signatures of chemical toxicity using point of departure analysis. <i>Computational Toxicology</i> , 2019 , 9, 50-60	3.1	4
12	Unified feature association networks through integration of transcriptomic and proteomic data. <i>PLoS Computational Biology</i> , 2019 , 15, e1007241	5	3
11	Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements. <i>Molecular and Cellular Proteomics</i> , 2014 ,	7.6	3
10	Integration of data systems and technology improves research and collaboration for a superfund research center. <i>Journal of the Association for Laboratory Automation</i> , 2012 , 17, 275-83		3
9	Combination attenuation offers strategy for live-attenuated coronavirus vaccines		3
8	P-Mart: Interactive Analysis of Ion Abundance Global Proteomics Data. <i>Journal of Proteome Research</i> , 2019 , 18, 1426-1432	5.6	2
7	Hypergraph models of biological networks to identify genes critical to pathogenic viral response. <i>BMC Bioinformatics</i> , 2021 , 22, 287	3.6	2
6	Bayesian Posterior Integration for Classification of Mass Spectrometry Data 2017 , 203-211		1
5	Expanding on Successful Concepts, Models, and Organization. <i>Environmental Science & Environmental Sci</i>	10.3	1
4	Unfolded Protein Response Inhibition Reduces Middle East Respiratory Syndrome Coronavirus-Induced Acute Lung Injury. <i>MBio</i> , 2021 , 12, e0157221	7.8	1

3	Gene co-expression network analysis in zebrafish reveals chemical class specific modules. <i>BMC Genomics</i> , 2021 , 22, 658	4.5	1
2	Evaluating predictive relationships between wristbands and urine for assessment of personal PAH exposure <i>Environment International</i> , 2022 , 163, 107226	12.9	1
1	Atomic Force Microscopy and Infrared Nanospectroscopy of COVID-19 Spike Protein for the Quantification of Adhesion to Common Surfaces. <i>Langmuir</i> , 2021 , 37, 12089-12097	4	О