List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9429596/publications.pdf Version: 2024-02-01

KIMIVASII SATO

#	Article	IF	CITATIONS
1	Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. Journal of Materials Chemistry, 2010, 20, 2749.	6.7	345
2	Apatite formation on organic monolayers in simulated body environment. , 2000, 50, 16-20.		115
3	TiO ₂ Synthesis Inspired by Biomineralization: Control of Morphology, Crystal Phase, and Light-Use Efficiency in a Single Process. Journal of the American Chemical Society, 2012, 134, 8841-8847.	6.6	106
4	Crystal Orientation of Hydroxyapatite Induced by Ordered Carboxyl Groups. Journal of Colloid and Interface Science, 2001, 240, 133-138.	5.0	96
5	Influence of emulsion on crystal growth of hydroxyapatite. Solid State Ionics, 2002, 151, 321-327.	1.3	75
6	Effect of Grain Boundaries on Thermal Conductivity of Silicon Carbide Ceramic at 5 to 1300 K. Journal of the American Ceramic Society, 2003, 86, 1812-1814.	1.9	62
7	Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceramics International, 2015, 41, 10314-10318.	2.3	53
8	Title is missing!. Journal of Materials Science Letters, 2001, 20, 111-114.	0.5	49
9	Atomicâ€5cale {101Â ⁻ 0} Interfacial Structure in Hydroxyapatite Determined by Highâ€Resolution Transmission Electron Microscopy. Journal of the American Ceramic Society, 2002, 85, 3054-3058.	1.9	48
10	Absorption bands near three micrometers in diffuse reflectance spectra of carbonaceous chondrites: Comparison with asteroids. Meteoritics and Planetary Science, 1997, 32, 503-507.	0.7	44
11	Synthesis, crystal structure and thermoelectric properties of a new carbide Zr2[Al3.56Si0.44]C5. Journal of Solid State Chemistry, 2007, 180, 1809-1815.	1.4	43
12	Mechanism of Hydroxyapatite Mineralization in Biological Systems(Review). Journal of the Ceramic Society of Japan, 2007, 115, 124-130.	1.3	39
13	State of the Dispersant and Particle Surface During Wet-Jet Milling for Preparation of a Stable Slurry. Journal of the American Ceramic Society, 2008, 91, 1095-1101.	1.9	30
14	Agglomeration control of hydroxyapatite nano-crystals grown in phase-separated microenvironments. Journal of Materials Science, 2006, 41, 5424-5428.	1.7	29
15	Multistep Growth Mechanism of Calcium Phosphate in the Earliest Stage of Morphology-Controlled Biomineralization. Langmuir, 2011, 27, 7077-7083.	1.6	27
16	Nanocelluloses and Related Materials Applicable in Thermal Management of Electronic Devices: A Review. Nanomaterials, 2020, 10, 448.	1.9	27
17	Hierarchical Texture of Calcium Carbonate Crystals Grown on a Polymerized Langmuirâ~'Blodgett Film. Langmuir, 2004, 20, 2979-2981.	1.6	26
18	Effect of pH and hydration on the normal and lateral interaction forces between alumina surfaces. Journal of Colloid and Interface Science, 2006, 304, 378-387.	5.0	26

#	Article	IF	CITATIONS
19	AFM interaction study of α-alumina particle and c-sapphire surfaces at high-ionic-strength electrolyte solutions. Journal of Colloid and Interface Science, 2007, 307, 116-123.	5.0	26
20	Macroporous ZrO2 ceramics prepared from colloidally stable nanoparticles building blocks and organic templates. Journal of Colloid and Interface Science, 2005, 291, 292-295.	5.0	24
21	Cellulose nanofiber/nanodiamond composite films: Thermal conductivity enhancement achieved by a tuned nanostructure. Advanced Powder Technology, 2018, 29, 972-976.	2.0	24
22	Effect of the addition of Al2O3 and h-BN fillers on the thermal conductivity of a cellulose nanofiber/nanodiamond composite film. Cellulose, 2019, 26, 5281-5289.	2.4	23
23	Slip Casting of Al2O3 Slurries Prepared by Wet Jet Milling. Journal of the Ceramic Society of Japan, 2005, 113, 495-497.	1.3	22
24	Densification and grain growth in BaTiO3 ceramics fabricated from nanopowders synthesized by ball-milling assisted hydrothermal reaction. Journal of the European Ceramic Society, 2008, 28, 599-604.	2.8	21
25	Morphology control of calcium phosphate by mineralization on the β-sheet peptide template. Chemical Communications, 2010, 46, 6983.	2.2	21
26	Colloidal processing, surface characterization, and sintering of nano ZrO2 powders. Journal of Materials Research, 2005, 20, 1348-1355.	1.2	20
27	Wet-jet milling-assisted exfoliation of h-BN particles with lamination structure. Ceramics International, 2015, 41, 10512-10519.	2.3	20
28	Carbon fiber/epoxy composite materials cured thermally and with microwave irradiation. Composite Interfaces, 2015, 22, 67-74.	1.3	19
29	Fabrication of Porous Alumina Ceramics by New Eco-Friendly Process. Journal of the Ceramic Society of Japan, 2005, 113, 87-91.	1.3	18
30	The Surface Structure of Hydroxyapatite Single Crystal and the Accumulation of Arachidic Acid. Journal of Colloid and Interface Science, 2000, 224, 23-27.	5.0	17
31	Particle Size Distribution of SnO2 Nano-Particles Synthesized by Pulsed Wire Discharge. Journal of the Ceramic Society of Japan, 2004, 112, 355-362.	1.3	17
32	Mutual Linkage of Particles in a Ceramic Green Body through Photoreactive Organic Binders. Journal of the Ceramic Society of Japan, 2005, 113, 687-691.	1.3	17
33	Homogeneous ZrO2-Al2O3 Composite Prepared by Nano-ZrO2 Particle Multilayer-Coated Al2O3 Particles. Journal of the American Ceramic Society, 2006, 89, 1103-1106.	1.9	17
34	Fabrication of Stable Al2O3 Slurries and Dense Green Bodies Using Wet Jet Milling. Journal of the American Ceramic Society, 2006, 89, 060623005134012-???.	1.9	17
35	Apatite-Silica Gel Composite Materials Prepared by a New Alternate Soaking Process. Journal of Sol-Gel Science and Technology, 2001, 21, 55-63.	1.1	16
36	Improvement of thermal conductivity of composite film composed of cellulose nanofiber and nanodiamond by optimizing process parameters. Cellulose, 2018, 25, 3973-3983.	2.4	16

#	Article	IF	CITATIONS
37	Inorganic-Organic Interfacial Interactions in Hydroxyapatite Mineralization Processes. Topics in Current Chemistry, 2006, , 127-153.	4.0	15
38	Extrusion of Alumina Ceramics with Hydraulic Alumina without Organic Additives. Journal of the Ceramic Society of Japan, 2007, 115, 191-194.	1.3	15
39	Synthesis of BaTiO3 powders by a ball milling-assisted hydrothermal reaction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 475, 12-16.	2.6	14
40	Characterization of Al2O3 Slurries Prepared by Wet Jet Milling. Journal of the Ceramic Society of Japan, 2005, 113, 491-494.	1.3	13
41	Low-temperature sintering of BaTiO3 powders prepared by a hydrothermal process with ball milling system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 475, 57-61.	2.6	13
42	Fabrication of Fine AlN Particles by Pulverizing with Very Small ZrO2 Beads. Journal of the American Ceramic Society, 2005, 88, 1676-1679.	1.9	12
43	Slip casting using wet-jet milled slurry. Journal of the European Ceramic Society, 2007, 27, 753-757.	2.8	12
44	Ball milling assisted hydrothermal synthesis of ZrO2 nanopowders. Ceramics International, 2015, 41, 5588-5593.	2.3	12
45	Wet jet milling of Al2O3 slurries. Journal of the European Ceramic Society, 2007, 27, 733-737.	2.8	11
46	Covalently Connected Particles in Green Bodies Fabricated by Tape Casting. Journal of the American Ceramic Society, 2007, 90, 279-282.	1.9	11
47	Dispersion of Ceramic Particles in Aqueous Media with Surfaceâ€Grafted Dispersant. Journal of the American Ceramic Society, 2009, 92, 256-259.	1.9	11
48	Arrangement techniques of proteins and cells using amorphous calcium phosphate nanofiber scaffolds. Applied Surface Science, 2012, 262, 8-12.	3.1	11
49	A facile method to prepare layered solid fillers-based polymer composites with isotropic thermal conductivity. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106776.	3.8	11
50	Synthesis of multilayer Nano-ZrO2 coated polystyrene spheres on fabrication of three-dimensional ordered macroporous structures. Journal of Materials Science, 2006, 41, 2779-2786.	1.7	10
51	Production of Ceramic Green Bodies Using a Microwave-Reactive Organic Binder. Journal of the American Ceramic Society, 2007, 90, 1319-1322.	1.9	10
52	Acetic acid mediated interactions between alumina surfaces. Applied Surface Science, 2012, 258, 4011-4015.	3.1	10
53	Hydrothermal Synthesis of Nano ZrO ₂ Powders. Key Engineering Materials, 2006, 317-318, 195-198	0.4	9
54	Polymorph and Orientation Controls of Calcium Carbonate Crystals Achieved by Organic Matrices. Journal of the Ceramic Society of Japan, 2006, 114, 754-759.	1.3	8

#	Article	IF	CITATIONS
55	Eco-friendly processing and methods for ceramic materials - A review. Journal of the Ceramic Society of Japan, 2008, 116, 1175-1181.	0.5	8
56	Exfoliation of hexagonal boron nitride using wet-rotating disc milling. Journal of the Ceramic Society of Japan, 2015, 123, 512-515.	0.5	8
57	The effect of polyelectrolyte on fabrication of macroporous ZrO2 ceramics. Journal of Materials Science, 2005, 40, 2903-2909.	1.7	7
58	Fluidity of methyl cellulose-contained suspensions and pastes prepared from differently milled Al2O3 powder. Journal of Colloid and Interface Science, 2009, 331, 221-226.	5.0	7
59	In-Situ IR Spectral Measurement in Organic Matrix-Mediated Hydroxyapatite Formation. Journal of the Ceramic Society of Japan, 2005, 113, 112-115.	1.3	6
60	Preparation of plated β-tricalcium phosphate containing hydroxyapatite for use in bonded inorganic-organic composites. Journal of Materials Science, 2005, 40, 2595-2597.	1.7	6
61	Hydrothermal Synthesis of BaTiO3 Assisted with Ball Milling. Journal of the Ceramic Society of Japan, 2006, 114, 651-653.	1.3	6
62	Highâ€Throughput Dimensional Evaluation of Hexagonal Boron Nitride 2D Nanomaterials. Crystal Research and Technology, 2019, 54, 1800249.	0.6	6
63	Deformation capability of poly(tetrafluoroethylene) materials: Estimation with X-ray diffraction measurements. Polymer Testing, 2022, 113, 107690.	2.3	6
64	Planetary Homogenizing of Al2O3 Slurries. Journal of the Ceramic Society of Japan, 2005, 113, 753-757.	1.3	5
65	Ion‧pecific Interaction of Alumina Surfaces. Journal of the American Ceramic Society, 2009, 92, 318-322.	1.9	5
66	Lateral and Normal Forces in Polymerâ€Mediated Interaction of Alumina Surfaces. Journal of the American Ceramic Society, 2011, 94, 3761-3767.	1.9	5
67	Localized thermal analysis of carbon fiberâ€reinforced polypropylene composites. Polymer Composites, 2012, 33, 1764-1769.	2.3	5
68	Fabrication of stable Al2O3 slurries and dense green bodies using soft-energy milling process. Journal of the European Ceramic Society, 2009, 29, 869-874.	2.8	4
69	A strategy to reduce energy usage in ceramic fabrication. Synthesiology, 2009, 2, 132-141.	0.2	4
70	Computational prediction of microstructures in αâ€elumina/ <scp>PMMA</scp> composites and its experimental verification. Polymer Composites, 2022, 43, 339-346.	2.3	4
71	Kinetic Study on Nano-ZrO2 from ZrOCl2 Solution Modified with Diglycol. Journal of the Ceramic Society of Japan, 2005, 113, 380-382.	1.3	3
72	Polyelectrolyte Mediated Interaction of Alumina in Wet Jet Milled Slurry/Ball Milled Slurry Supernatants. Journal of the Ceramic Society of Japan, 2006, 114, 1100-1102.	1.3	3

#	Article	IF	CITATIONS
73	Normal and lateral interaction of α-alumina in different electrolyte solutions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 215-220.	1.7	3
74	Rheological behaviors of ball-milled and wet-jet milled ZnO slurries with polyvinyl alcohol as an organic binder. Journal of the Ceramic Society of Japan, 2011, 119, 203-207.	0.5	3
75	Simultaneous attainment of particle dispersion and surface modification of Al2O3 nanoparticles via wet–jet milling. Journal of Composite Materials, 2021, 55, 521-530.	1.2	3
76	Diffusion Bonding Assisted by Centrifugal Force. Journal of the Ceramic Society of Japan, 2003, 111, 733-737.	1.3	2
77	Extrusion behavior of mono-calcium aluminate (CaAl2O4) paste. Journal of the Ceramic Society of Japan, 2008, 116, 239-241.	0.5	2
78	Methyl cellulose bridging between alumina surfaces. Journal of the Ceramic Society of Japan, 2010, 118, 314-317.	0.5	2
79	Protection of carbon fiber surfaces with silicon-based ceramic coating. Journal of the Ceramic Society of Japan, 2019, 127, 331-334.	0.5	2
80	A feasibility study on direct measurements of interaction forces between carbon fiber surfaces and other substances. Polymer Composites, 2020, 41, 5209-5215.	2.3	2
81	In Vitro Calcification Model (2): Apatite Formation on Segmented Polyurethane Thin Films by Using an Alternate Soaking Process: The Effect of Adsorbed Serum Proteins on Calcification. Journal of Bioactive and Compatible Polymers, 2000, 15, 230-244.	0.8	1
82	Atomic Scale Interfacial Structure of Hydroxyapatite Observed with High-Resolution Transmission Electron Microscopy. Key Engineering Materials, 2000, 192-195, 283-286.	0.4	1
83	Ceramic molds suitable for rapid forming of CFRP composites via microwave irradiation. International Journal of Applied Ceramic Technology, 2019, 16, 2380-2384.	1.1	1
84	Preparation of Stable Nano-sized Al2O3 Slurries Using Wet-Jet Milling. , 0, , 11-18.		1
85	Centrifugal Sintering of Copper. Key Engineering Materials, 2004, 264-268, 757-760.	0.4	0
86	Fabrication of Al ₂ O ₃ Ceramics by Environmentally Friendly Process. Key Engineering Materials, 2006, 317-318, 751-754.	0.4	0
87	Gelcasting of Mechanochemically Synthesized Hydroxyapatite. Key Engineering Materials, 2005, 280-283, 1555-1558.	0.4	0
88	Multilayer ZrO ₂ Precursor Coated Polystyrene Particles. Key Engineering Materials, 2005, 280-283, 529-532.	0.4	0
89	Environmentally benign processing of ceramics by extrusion with various clay minerals as inorganic binders. Journal of the Ceramic Society of Japan, 2008, 116, 224-229.	0.5	0
90	Property Modification of Ball-milled Slurries using Wet-jet Milling. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 21-25.	0.1	0

#	Article	IF	CITATIONS
91	Regulation mechanism of the crystal orientation in calcium carbonate as biominerals. Nihon Kessho Gakkaishi, 2004, 46, 13-13.	0.0	0
92	Mutual Linkage of Particles in Ceramic Green Bodies through Reactive Organic Binders. , 0, , 35-46.		0
93	Nano-Sized Hydroxyapatite Crystals Grown in Phase Separated Microenvironments. Ceramic Transactions, 0, , 461-465.	0.1	0