Xiaolong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9429198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic multicomponent reaction involving a ketyl-type radical. , 2022, 1, 464-474.		22
2	Selective electrochemical hydrogenation of furfural to 2-methylfuran over a single atom Cu catalyst under mild pH conditions. Green Chemistry, 2021, 23, 3028-3038.	9.0	43
3	Photochemical intermolecular dearomative cycloaddition of bicyclic azaarenes with alkenes. Science, 2021, 371, 1338-1345.	12.6	119
4	CdSâ€Enhanced Ethanol Selectivity in Electrocatalytic CO ₂ Reduction at Sulfideâ€Đerived Cuâ^'Cd. ChemSusChem, 2021, 14, 2924-2934.	6.8	18
5	AlEâ€Active Difluoroboron Complexes with N,Oâ€Bidentate Ligands: Rapid Construction by Copperâ€Catalyzed Câ^'H Activation. Advanced Science, 2021, 8, e2101814.	11.2	18
6	Atomic nickel cluster decorated defect-rich copper for enhanced C2 product selectivity in electrocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 291, 120030.	20.2	66
7	Twoâ€Ðimensional Electrocatalysts for Efficient Reduction of Carbon Dioxide. ChemSusChem, 2020, 13, 59-77.	6.8	31
8	Unique Layerâ€Dopingâ€Induced Regulation of Charge Behavior in Metalâ€Free Carbon Nitride Photoanodes for Enhanced Performance. ChemSusChem, 2020, 13, 328-333.	6.8	16
9	Electrocatalytic carbon dioxide reduction: from fundamental principles to catalyst design. Materials Today Advances, 2020, 7, 100074.	5.2	95
10	The Origin of the Electrocatalytic Activity for CO ₂ Reduction Associated with Metalâ€Organic Frameworks. ChemSusChem, 2020, 13, 2552-2556.	6.8	17
11	Mechanistic understanding of the electrocatalytic CO2 reduction reaction – New developments based on advanced instrumental techniques. Nano Today, 2020, 31, 100835.	11.9	80
12	Electrohydrogenation of Carbon Dioxide using a Ternary Pd/Cu ₂ O–Cu Catalyst. ChemSusChem, 2019, 12, 4471-4479.	6.8	15
13	Electrocatalytic CO ₂ Reduction to Formate on Cu Based Surface Alloys with Enhanced Selectivity. ACS Sustainable Chemistry and Engineering, 2019, 7, 19453-19462.	6.7	29
14	Dual Quantum Dotâ€Đecorated Bismuth Vanadate Photoanodes for Highly Efficient Solar Water Oxidation. ChemSusChem, 2019, 12, 1240-1245.	6.8	19
15	Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO ₂ reduction at low overpotential. Energy and Environmental Science, 2019, 12, 1334-1340.	30.8	230
16	Oxomolybdate anchored on copper for electrocatalytic hydrogen production over the entire pH range. Applied Catalysis B: Environmental, 2019, 249, 227-234.	20.2	14
17	Phosphomolybdic Acidâ€Assisted Growth of Ultrathin Bismuth Nanosheets for Enhanced Electrocatalytic Reduction of CO ₂ to Formate. ChemSusChem, 2019, 12, 1091-1100.	6.8	38
18	Size Controllable Metal Nanoparticles Anchored on Nitrogen Doped Carbon for Electrocatalytic Energy Conversion. ChemElectroChem, 2019, 6, 1508-1513.	3.4	4

XIAOLONG ZHANG

#	Article	IF	CITATIONS
19	Electrochemical reduction of CO ₂ on defect-rich Bi derived from Bi ₂ S ₃ with enhanced formate selectivity. Journal of Materials Chemistry A, 2018, 6, 4714-4720.	10.3	144
20	Identification of a new substrate effect that enhances the electrocatalytic activity of dendritic tin in CO2 reduction. Physical Chemistry Chemical Physics, 2018, 20, 5936-5941.	2.8	20
21	Advanced Composite 2D Energy Materials by Simultaneous Anodic and Cathodic Exfoliation. Advanced Energy Materials, 2018, 8, 1702794.	19.5	41
22	Stannate derived bimetallic nanoparticles for electrocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 7851-7858.	10.3	61
23	Ultra-small Cu nanoparticles embedded in N-doped carbon arrays for electrocatalytic CO2 reduction reaction in dimethylformamide. Nano Research, 2018, 11, 3678-3690.	10.4	17
24	Controllable Synthesis of Few‣ayer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO ₂ Reduction Performance. Angewandte Chemie - International Edition, 2018, 57, 13283-13287.	13.8	141
25	Controllable Synthesis of Fewâ€Layer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO ₂ Reduction Performance. Angewandte Chemie, 2018, 130, 13467-13471.	2.0	42
26	Bismuth Vanadate with Electrostatically Anchored 3D Carbon Nitride Nanoâ€networks as Efficient Photoanodes for Water Oxidation. ChemSusChem, 2018, 11, 2510-2516.	6.8	25
27	Cobalt selenide nanoflake decorated reduced graphene oxide nanocomposite for efficient glucose electro-oxidation in alkaline medium. Journal of Materials Chemistry A, 2017, 5, 19289-19296.	10.3	26
28	A Novel Aluminum–Graphite Dualâ€ion Battery. Advanced Energy Materials, 2016, 6, 1502588.	19.5	1,079
29	In-situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochimica Acta, 2016, 211, 404-410.	5.2	60
30	A Dualâ€Ion Battery Constructed with Aluminum Foil Anode and Mesocarbon Microbead Cathode via an Alloying/Intercalation Process in an Ionic Liquid Electrolyte. Advanced Materials Interfaces, 2016, 3, 1600605.	3.7	93
31	Solvothermal synthesis of Na2Ti3O7 nanowires embedded in 3D graphene networks as an anode for high-performance sodium-ion batteries. Electrochimica Acta, 2016, 211, 430-436.	5.2	63
32	Uniform Incorporation of Flocculent Molybdenum Disulfide Nanostructure into Three-Dimensional Porous Graphene as an Anode for High-Performance Lithium Ion Batteries and Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 4691-4699.	8.0	99
33	In situ incorporation of FeS nanoparticles/carbon nanosheets composite with an interconnected porous structure as a high-performance anode for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 3697-3703.	10.3	153
34	Manganese Dioxide/Carbon Nanotubes Composite with Optimized Microstructure via Room Temperature Solution Approach for High Performance Lithium-Ion Battery Anodes. Electrochimica Acta, 2016, 187, 465-472.	5.2	49
35	Uniform Ultrasmall Manganese Monoxide Nanoparticle/Carbon Nanocomposite as a High-Performance Anode for Lithium Storage. Electrochimica Acta, 2016, 196, 634-641.	5.2	26
36	Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes. Electrochimica Acta, 2015, 167, 132-138.	5.2	70

XIAOLONG ZHANG

#	Article	IF	CITATIONS
37	Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chemical Society Reviews, 2015, 44, 699-728.	38.1	740
38	Porous 0.2Li ₂ MnO ₃ ·0.8LiNi _{0.5} Mn _{0.5} O ₂ nanorods as cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 1636-1640.	10.3	71
39	Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd \$ar 3\$ m). Nano Research, 2013, 6, 679-687.	10.4	126
40	Ordered spinel LiNi0.5Mn1.5O4 nanorods for high-rate lithium-ion batteries. Journal of Electroanalytical Chemistry, 2013, 688, 113-117.	3.8	31
41	Intergrown LiNi0.5Mn1.5O4·LiNi1/3Co1/3Mn1/3O2 composite nanorods as high-energy density cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 13742.	10.3	16
42	LiNi _{0.5} Mn _{1.5} O ₄ Porous Nanorods as High-Rate and Long-Life Cathodes for Li-Ion Batteries. Nano Letters, 2013, 13, 2822-2825.	9.1	257
43	Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro–nano structure and high rate capability. RSC Advances, 2012, 2, 5669.	3.6	111