Ester B M Remmerswaal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9428731/publications.pdf

Version: 2024-02-01

84 papers 6,158 citations

94269 37 h-index 74018 75 g-index

86 all docs 86 docs citations

86 times ranked 10885 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
2	Guidelines for the use of flow cytometry and cell sorting in immunological studies < sup>* < /sup>. European Journal of Immunology, 2017, 47, 1584-1797.	1.6	505
3	Primary immune responses to human CMV: a critical role for IFN-γ–producing CD4+ T cells in protection against CMV disease. Blood, 2003, 101, 2686-2692.	0.6	391
4	Emergence of a CD4+CD28â^' Granzyme B+, Cytomegalovirus-Specific T Cell Subset after Recovery of Primary Cytomegalovirus Infection. Journal of Immunology, 2004, 173, 1834-1841.	0.4	314
5	Tissue-resident memory T cells populate the human brain. Nature Communications, 2018, 9, 4593.	5.8	242
6	Differentiation of cytomegalovirus-specific CD8+ T cells in healthy and immunosuppressed virus carriers. Blood, 2001, 98, 754-761.	0.6	186
7	The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9- subsets. Nature Communications, 2018, 9, 1760.	5.8	167
8	Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. Journal of Clinical Investigation, 2010, 120, 4077-4090.	3.9	165
9	IL-7 receptor α chain expression distinguishes functional subsets of virus-specific human CD8+ T cells. Blood, 2005, 106, 2091-2098.	0.6	161
10	CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. Journal of Clinical Investigation, 2011, 121, 2254-2263.	3.9	161
11	Proliferation Requirements of Cytomegalovirus-Specific, Effector-Type Human CD8+ T Cells. Journal of Immunology, 2002, 169, 5838-5843.	0.4	138
12	Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain, 2020, 143, 1714-1730.	3.7	131
13	The RECOVAC Immune-response Study: The Immunogenicity, Tolerability, and Safety of COVID-19 Vaccination in Patients With Chronic Kidney Disease, on Dialysis, or Living With a Kidney Transplant. Transplantation, 2022, 106, 821-834.	0.5	127
14	Trigger-happy resident memory CD4+ T cells inhabit the human lungs. Mucosal Immunology, 2018, 11, 654-667.	2.7	124
15	The Size and Phenotype of Virus-Specific T Cell Populations Is Determined by Repetitive Antigenic Stimulation and Environmental Cytokines. Journal of Immunology, 2004, 172, 6107-6114.	0.4	112
16	IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells. Blood, 2013, 122, 3010-3019.	0.6	107
17	Specific expression of GPR56 by human cytotoxic lymphocytes. Journal of Leukocyte Biology, 2011, 90, 735-740.	1.5	104
18	Enhanced formation and survival of CD4 ⁺ CD25 ^{hi} Foxp3 ⁺ T-cells in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2009, 50, 788-801.	0.6	100

#	Article	IF	Citations
19	Deep Sequencing of Antiviral T-Cell Responses to HCMV and EBV in Humans Reveals a Stable Repertoire That Is Maintained for Many Years. PLoS Pathogens, 2012, 8, e1002889.	2.1	95
20	Blimpâ€1 homolog Hobit identifies effectorâ€type lymphocytes in humans. European Journal of Immunology, 2015, 45, 2945-2958.	1.6	94
21	Strong selection of virus-specific cytotoxic CD4+ T-cell clones during primary human cytomegalovirus infection. Blood, 2006, 108, 3121-3127.	0.6	93
22	The Adhesion G Protein-Coupled Receptor GPR56/ADGRG1 Is an Inhibitory Receptor on Human NK Cells. Cell Reports, 2016, 15, 1757-1770.	2.9	84
23	Cytomegalovirus-Induced Effector T Cells Cause Endothelial Cell Damage. Vaccine Journal, 2012, 19, 772-779.	3.2	82
24	Characteristics of differentiated CD8+ and CD4+ T cells present in the human brain. Acta Neuropathologica, 2013, 126, 525-535.	3.9	80
25	A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination. PLoS ONE, 2016, 11, e0149871.	1.1	80
26	Distinct immune composition in lymph node and peripheral blood of CLL patients is reshaped during venetoclax treatment. Blood Advances, 2019, 3, 2642-2652.	2.5	79
27	Human virus-specific effector-type T cells accumulate in blood but not in lymph nodes. Blood, 2012, 119, 1702-1712.	0.6	67
28	CD40 stimulation of B-cell chronic lymphocytic leukaemia cells enhances the anti-apoptotic profile, but also Bid expression and cells remain susceptible to autologous cytotoxic T-lymphocyte attack. British Journal of Haematology, 2004, 127, 404-415.	1.2	65
29	B and T Lymphocyte Attenuator Is Highly Expressed on CMV-Specific T Cells during Infection and Regulates Their Function. Journal of Immunology, 2010, 185, 3140-3148.	0.4	64
30	Blimpâ€1 induces and Hobit maintains the cytotoxic mediator granzyme B in CD8 TÂcells. European Journal of Immunology, 2018, 48, 1644-1662.	1.6	61
31	The Transcription Factor Hobit Identifies Human Cytotoxic CD4+ T Cells. Frontiers in Immunology, 2017, 8, 325.	2.2	58
32	CMV-specific CD8+ T-cell function is not impaired in chronic lymphocytic leukemia. Blood, 2014, 123, 717-724.	0.6	53
33	Infection History Determines the Differentiation State of Human CD8 ⁺ T Cells. Journal of Virology, 2015, 89, 5110-5123.	1.5	51
34	CROSS-REACTIVITY OF CYTOMEGALOVIRUS-SPECIFIC CD8+ T CELLS TO ALLO-MAJOR HISTOCOMPATIBILITY COMPLEX CLASS I MOLECULES. Transplantation, 2004, 77, 1879-1885.	0.5	48
35	Differential Usage of Cellular Niches by Cytomegalovirus versus EBV- and Influenza Virus-Specific CD8+ T Cells. Journal of Immunology, 2006, 177, 4998-5005.	0.4	46
36	The Contribution of Cytomegalovirus Infection to Immune Senescence Is Set by the Infectious Dose. Frontiers in Immunology, 2018, 8, 1953.	2.2	46

#	Article	IF	CITATIONS
37	Label-free Analysis of CD8+ T Cell Subset Proteomes Supports a Progressive Differentiation Model of Human-Virus-Specific T Cells. Cell Reports, 2017, 19, 1068-1079.	2.9	40
38	Improving CLL Vγ9Vδ2-T–cell fitness for cellular therapy by ex vivo activation and ibrutinib. Blood, 2018, 132, 2260-2272.	0.6	39
39	Restoration of T cell function in chronic hepatitis B patients upon treatment with interferon based combination therapy. Journal of Hepatology, 2016, 64, 539-546.	1.8	37
40	17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients. Journal of Infection, 2016, 72, 713-722.	1.7	35
41	The RECOVAC IR study: the immune response and safety of the mRNA-1273 COVID-19 vaccine in patients with chronic kidney disease, on dialysis or living with a kidney transplant. Nephrology Dialysis Transplantation, 2021, 36, 1761-1764.	0.4	33
42	Functional re-expression of CCR7 on CMV-specific CD8+ T cells upon antigenic stimulation. International Immunology, 2005, 17, 713-719.	1.8	30
43	Human B cells promote T-cell plasticity to optimize antibody response by inducing coexpression of TH1/TFH signatures. Journal of Allergy and Clinical Immunology, 2015, 135, 1053-1060.	1.5	29
44	Granzyme M targets host cell hnRNP K that is essential for human cytomegalovirus replication. Cell Death and Differentiation, 2013, 20, 419-429.	5.0	28
45	Phenotypic and Functional Characterization of Circulating Polyomavirus BK VP1-Specific CD8 ⁺ T Cells in Healthy Adults. Journal of Virology, 2013, 87, 10263-10272.	1.5	26
46	Clonal Evolution of CD8 ⁺ T Cell Responses against Latent Viruses: Relationship among Phenotype, Localization, and Function. Journal of Virology, 2015, 89, 568-580.	1.5	26
47	Expression of ILâ€7Rα and KLRG1 defines functionally distinct CD8 ⁺ Tâ€cell populations in humans. European Journal of Immunology, 2019, 49, 694-708.	1.6	24
48	Antibody and T-Cell Responses 6 Months After Coronavirus Disease 2019 Messenger RNA-1273 Vaccination in Patients With Chronic Kidney Disease, on Dialysis, or Living With a Kidney Transplant. Clinical Infectious Diseases, 2023, 76, e188-e199.	2.9	24
49	Longâ€ŧerm detection of microchimaerism in peripheral blood after pretransplantation blood transfusion. British Journal of Haematology, 1998, 102, 1004-1009.	1.2	22
50	Blood and beyond: Properties of circulating and tissueâ€resident human virusâ€specific αβ CD8 ⁺ T cells. European Journal of Immunology, 2014, 44, 934-944.	1.6	22
51	Postâ€mortem multiple sclerosis lesion pathology is influenced by single nucleotide polymorphisms. Brain Pathology, 2020, 30, 106-119.	2.1	22
52	A New Subset of Human Naive CD8+ T Cells Defined by Low Expression of IL-7Rα. Journal of Immunology, 2007, 179, 221-228.	0.4	21
53	CXCR5+CD4+ follicular helper T cells accumulate in resting human lymph nodes and have superior B cell helper activity. International Immunology, 2014, 26, 183-192.	1.8	21
54	Redirection of CMV-specific CTL towards B-CLL via CD20-targeted HLA/CMV complexes. Leukemia, 2006, 20, 1096-1102.	3.3	20

#	Article	IF	Citations
55	Monitoring the T-Cell Receptor Repertoire at Single-Clone Resolution. PLoS ONE, 2006, 1, e55.	1.1	19
56	Rapid T cell repopulation after rabbit anti-thymocyte globulin (rATG) treatment is driven mainly by cytomegalovirus. Clinical and Experimental Immunology, 2012, 169, 292-301.	1.1	18
57	Divergent chemokine receptor expression and the consequence for human IgG4 BÂcell responses. European Journal of Immunology, 2020, 50, 1113-1125.	1.6	18
58	Clinically Relevant Reactivation of Polyomavirus BK (BKPyV) in HLA-A02-Positive Renal Transplant Recipients Is Associated with Impaired Effector-Memory Differentiation of BKPyV-Specific CD8+ T Cells. PLoS Pathogens, 2016, 12, e1005903.	2.1	17
59	EBV-Specific CD8+ T-Cells Are Not Functionally Impaired in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 1723-1723.	0.6	16
60	<p>Butyrate production in patients with end-stage renal disease</p> . International Journal of Nephrology and Renovascular Disease, 2019, Volume 12, 87-101.	0.8	14
61	CD8 and CD4 T Cell Populations in Human Kidneys. Cells, 2021, 10, 288.	1.8	14
62	Transcriptional profiling of human \hat{V} 1 TÂcells reveals a pathogen-driven adaptive differentiation program. Cell Reports, 2022, 39, 110858.	2.9	13
63	Autologous cytomegalovirus-specific T cells as effector cells in immunotherapy of B cell chronic lymphocytic leukaemia. British Journal of Haematology, 2004, 126, 512-516.	1.2	12
64	Chronic lymphocytic leukemia specific T-cell subset alterations are clone-size dependent and not present in monoclonal B lymphocytosis. Leukemia and Lymphoma, 2012, 53, 2321-2325.	0.6	12
65	Tissueâ€resident mucosalâ€essociated invariant T (MAIT) cells in the human kidney represent a functionally distinct subset. European Journal of Immunology, 2020, 50, 1783-1797.	1.6	12
66	Differentiation of human alloreactive CD8+ T cells in vitro. Immunology, 2002, 105, 278-285.	2.0	11
67	Human CXCR5 ⁺ PDâ€1 ⁺ CD8 T cells in healthy individuals and patients with hematologic malignancies. European Journal of Immunology, 2021, 51, 703-713.	1.6	11
68	Assessing Anti-HCMV Cell Mediated Immune Responses in Transplant Recipients and Healthy Controls Using a Novel Functional Assay. Frontiers in Cellular and Infection Microbiology, 2020, 10, 275.	1.8	9
69	The effect of highâ€salt diet on tâ€lymphocyte subpopulations in healthy males—A pilot study. Journal of Clinical Hypertension, 2020, 22, 2152-2155.	1.0	8
70	Circulating mucosalâ€associated invariant T cells in subjects with recurrent urinary tract infections are functionally impaired. Immunity, Inflammation and Disease, 2020, 8, 80-92.	1.3	6
71	Human Lymph Node Stromal Cells Have the Machinery to Regulate Peripheral Tolerance during Health and Rheumatoid Arthritis. International Journal of Molecular Sciences, 2020, 21, 5713.	1.8	5
72	Modulation of the T cell receptor beta chain repertoire after heart transplantation. Transplant Immunology, 2000, 8, 83-94.	0.6	4

#	Article	IF	CITATIONS
73	CMV-specific CD8pos T lymphocyte differentiation in latent CMV infection. Transplantation Proceedings, 2001, 33, 1802-1803.	0.3	4
74	Clinical consequences of primary CMV infection after renal transplantation: a case–control study. Transplant International, 2020, 33, 1116-1127.	0.8	4
75	Functional Differences Between EBV―and CMVâ€Specific CD8 ⁺ T cells Demonstrate Heterogeneity of T cell Dysfunction in CLL. HemaSphere, 2020, 4, e337.	1.2	3
76	Redirection of CMV Specific CTL towards B-CLL Via CD20 Targeted HLA/CMV Complexes Blood, 2005, 106, 449-449.	0.6	3
77	Chronic Lymphocytic Leukemia (CLL) Cells Are Susceptible to γÎ-T Cell Mediated Killing, Provided CLL-Derived γÎ-T Cell Dysfunction Can be Reversed. Blood, 2015, 126, 2914-2914.	0.6	3
78	Differentiation of CMV-specific CD8POS T lymphocytes in primary CMV infection after renal transplantation. Transplantation Proceedings, 2001, 33, 3630.	0.3	2
79	CMV-Specific CD8+ T Cells in Lymph Nodes of Renal Transplant Recipients: A Rare but Special Breed. Transplantation, 2012, 94, 450.	0.5	2
80	Enhanced Formation and Survival of Regulatory T Cells in CLL Blood, 2008, 112, 1065-1065.	0.6	1
81	hCMV-Specific CD8+ T Cells in Lymph Nodes from Renal Transplant Recipients Contain †True†Memory Cells. Transplantation, 2012, 94, 449.	0.5	0
82	645. Mucosal-Associated Invariant T cells in Renal Tissue From Patients With Recurrent Urinary Tract Infections. Open Forum Infectious Diseases, 2018, 5, S234-S234.	0.4	0
83	CMV-Specific CD8+ T-CELL Function Is NOT Impaired In CLL. Blood, 2013, 122, 2862-2862.	0.6	0
84	Variable leukocyte composition of red blood cell concentrates prepared in top-bottom systems: possible implications for pre-transplant blood transfusion. Vox Sanguinis, 2000, 79, 83-6.	0.7	0