
Leyre Mestre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/942870/publications.pdf Version: 2024-02-01

LEVDE MESTDE

#	Article	IF	CITATIONS
1	Efficacy of Vafidemstat in Experimental Autoimmune Encephalomyelitis Highlights the KDM1A/RCOR1/HDAC Epigenetic Axis in Multiple Sclerosis. Pharmaceutics, 2022, 14, 1420.	2.0	3
2	Selected Clostridia Strains from The Human Microbiota and their Metabolite, Butyrate, Improve Experimental Autoimmune Encephalomyelitis. Neurotherapeutics, 2021, 18, 920-937.	2.1	18
3	Aging and neuroinflammation: Changes in immune cell responses, axon integrity, and motor function in a viral model of progressive multiple sclerosis. Aging Cell, 2021, 20, e13440.	3.0	4
4	2â€arachidonoylglycerol reduces chondroitin sulphate proteoglycan production by astrocytes and enhances oligodendrocyte differentiation under inhibitory conditions. Glia, 2020, 68, 1255-1273.	2.5	13
5	How oral probiotics affect the severity of an experimental model of progressive multiple sclerosis? Bringing commensal bacteria into the neurodegenerative process. Gut Microbes, 2020, 12, 1813532.	4.3	24
6	Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis. Journal of Neuroinflammation, 2020, 17, 88.	3.1	20
7	Perspectives on Cannabis-Based Therapy of Multiple Sclerosis: A Mini-Review. Frontiers in Cellular Neuroscience, 2020, 14, 34.	1.8	23
8	Effects of EHP-101 on inflammation and remyelination in murine models of Multiple sclerosis. Neurobiology of Disease, 2020, 143, 104994.	2.1	18
9	A Commercial Probiotic Induces Tolerogenic and Reduces Pathogenic Responses in Experimental Autoimmune Encephalomyelitis. Cells, 2020, 9, 906.	1.8	31
10	Manipulation of Gut Microbiota Influences Immune Responses, Axon Preservation, and Motor Disability in a Model of Progressive Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 1374.	2.2	35
11	2â€AG limits Theiler's virus induced acute neuroinflammation by modulating microglia and promoting MDSCs. Glia, 2018, 66, 1447-1463.	2.5	40
12	Hypoxia mimetic activity of VCE-004.8, a cannabidiol quinone derivative: implications for multiple sclerosis therapy. Journal of Neuroinflammation, 2018, 15, 64.	3.1	44
13	2-Arachidonoylglycerol Reduces Proteoglycans and Enhances Remyelination in a Progressive Model of Demyelination. Journal of Neuroscience, 2017, 37, 8385-8398.	1.7	47
14	Microglia activation states and cannabinoid system: Therapeutic implications. , 2016, 166, 40-55.		127
15	Brain Innate Immunity in the Regulation of Neuroinflammation: Therapeutic Strategies by Modulating CD200-CD200R Interaction Involve the Cannabinoid System. Current Pharmaceutical Design, 2014, 20, 4707-4722.	0.9	69
16	Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE. Journal of Immunology Research, 2014, 2014, 1-10.	0.9	5
17	Viral models of multiple sclerosis: Neurodegeneration and demyelination in mice infected with Theiler's virus. Progress in Neurobiology, 2013, 101-102, 46-64.	2.8	78
18	Identification of receptors and enzymes for endocannabinoids in NSC-34 cells: Relevance for in vitro studies with cannabinoids in motor neuron diseases. Neuroscience Letters, 2012, 508, 67-72.	1.0	13

Leyre Mestre

#	Article	IF	CITATIONS
19	A Cannabigerol Quinone Alleviates Neuroinflammation in a Chronic Model of Multiple Sclerosis. Journal of NeuroImmune Pharmacology, 2012, 7, 1002-1016.	2.1	119
20	CD200 D200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia, 2012, 60, 1437-1450.	2.5	113
21	Chemical Probes for the Recognition of Cannabinoid Receptors in Native Systems. Angewandte Chemie - International Edition, 2012, 51, 6896-6899.	7.2	37
22	The endocannabinoid anandamide downregulates IL-23 and IL-12 subunits in a viral model of multiple sclerosis: Evidence for a cross-talk between IL-12p70/IL-23 axis and IL-10 in microglial cells. Brain, Behavior, and Immunity, 2011, 25, 736-749.	2.0	63
23	Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1receptors. Journal of Neuroinflammation, 2011, 8, 102.	3.1	51
24	Anandamide enhances ILâ€10 production in activated microglia by targeting CB ₂ receptors: Roles of ERK1/2, JNK, and NFâ€₽B. Glia, 2010, 58, 135-147.	2.5	149
25	A role for CB2 receptors in anandamide signalling pathways involved in the regulation of IL-12 and IL-23 in microglial cells. Biochemical Pharmacology, 2009, 77, 86-100.	2.0	85
26	Chapter 9 The Endocannabinoid Anandamide. Vitamins and Hormones, 2009, 81, 207-230.	0.7	19
27	Study of the regulation of the endocannabinoid system in a virus model of multiple sclerosis reveals a therapeutic effect of palmitoylethanolamide. European Journal of Neuroscience, 2008, 28, 633-641.	1.2	103
28	Therapeutic potential of CB2 targeting in multiple sclerosis. Expert Opinion on Therapeutic Targets, 2008, 12, 185-195.	1.5	37
29	Anandamide inhibits IL-12p40 production by acting on the promoter repressor element GA-12: possible involvement of the COX-2 metabolite prostamide E2. Biochemical Journal, 2008, 409, 761-770.	1.7	40
30	Cannabinoid System and Neuroinflammation: Implications for Multiple Sclerosis. NeuroImmunoModulation, 2007, 14, 182-187.	0.9	20
31	Excitotoxicity in a chronic model of multiple sclerosis: Neuroprotective effects of cannabinoids through CB1 and CB2 receptor activation. Molecular and Cellular Neurosciences, 2007, 34, 551-561.	1.0	103
32	The synthetic cannabinoid WIN 55,212-2 increases COX-2 expression and PGE2 release in murine brain-derived endothelial cells following Theiler's virus infection. Biochemical Pharmacology, 2006, 72, 869-880.	2.0	51
33	Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis. Journal of Neurochemistry, 2005, 92, 1327-1339.	2.1	131
34	Activation of cannabinoid CB2 receptor negatively regulates IL-12p40 production in murine macrophages: role of IL-10 and ERK1/2 kinase signaling. British Journal of Pharmacology, 2005, 145, 441-448.	2.7	114
35	Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. Neurobiology of Disease, 2005, 20, 207-217.	2.1	131
36	The Role of Cannabinoid System on Immune Modulation: Therapeutic Implications on CNS Inflammation. Mini-Reviews in Medicinal Chemistry, 2005, 5, 671-675.	1.1	33