
Matteo Tonezzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9428650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gas Sensors. , 2023, , 185-208.		4
2	Design and fabrication of effective gradient temperature sensor array based on bilayer SnO2/Pt for gas classification. Sensors and Actuators B: Chemical, 2022, 351, 130979.	4.0	11
3	Enhancing Electron Transfer and Stability of Screen-Printed Carbon Electrodes Modified with AgNP-Reduced Graphene Oxide Nanocomposite. Journal of Electronic Materials, 2022, 51, 1004-1012.	1.0	1
4	Electronic noses based on metal oxide nanowires: A review. Nanotechnology Reviews, 2022, 11, 897-925.	2.6	21
5	Selective gas detection and quantification using a resistive sensor based on Pd-decorated soda-lime glass. Sensors and Actuators B: Chemical, 2021, 335, 129714.	4.0	10
6	Quantitative Assessment of Trout Fish Spoilage with a Single Nanowire Gas Sensor in a Thermal Gradient. Nanomaterials, 2021, 11, 1604.	1.9	13
7	Single Nanowire Gas Sensor Able to Distinguish Fish and Meat and Evaluate Their Degree of Freshness. Chemosensors, 2021, 9, 249.	1.8	6
8	Optimization of gas sensors measurements by dynamic headspace analysis supported by simultaneous direct injection mass spectrometry. Sensors and Actuators B: Chemical, 2021, 347, 130580.	4.0	2
9	Detection of Mackerel Fish Spoilage with a Gas Sensor Based on One Single SnO2 Nanowire. Chemosensors, 2021, 9, 2.	1.8	9
10	Sensing Performance of Thermal Electronic Noses: A Comparison between ZnO and SnO2 Nanowires. Nanomaterials, 2021, 11, 2773.	1.9	6
11	From Single Nanowires to Smart Systems: Different Ways to Assess Food Quality. , 2021, 5, .		0
12	Electrochemical stability of screen-printed electrodes modified with Au nanoparticles for detection of methicillin-resistant Staphylococcus aureus. Materials Chemistry and Physics, 2020, 255, 123562.	2.0	26
13	Multi gas sensors using one nanomaterial, temperature gradient, and machine learning algorithms for discrimination of gases and their concentration. Analytica Chimica Acta, 2020, 1124, 85-93.	2.6	35
14	Prototype edge-grown nanowire sensor array for the real-time monitoring and classification of multiple gases. Journal of Science: Advanced Materials and Devices, 2020, 5, 409-416.	1.5	15
15	Recent Advances of Silver Nanoparticles in Cancer Diagnosis and Treatment. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 1276-1287.	0.9	51
16	Stable Electrochemical Measurements of Platinum Screen-Printed Electrodes Modified with Vertical ZnO Nanorods for Bacterial Detection. Journal of Nanomaterials, 2019, 2019, 1-9.	1.5	10
17	Improved Gas Selectivity Based on Carbon Modified SnO2 Nanowires. Frontiers in Materials, 2019, 6, .	1.2	31
18	Self-heated Ag-decorated SnO2 nanowires with low power consumption used as a predictive virtual multisensor for H2S-selective sensing. Analytica Chimica Acta, 2019, 1069, 108-116.	2.6	37

MATTEO TONEZZER

#	Article	IF	CITATIONS
19	Selective gas sensor based on one single SnO2 nanowire. Sensors and Actuators B: Chemical, 2019, 288, 53-59.	4.0	110
20	Predictive gas sensor based on thermal fingerprints from Pt-SnO2 nanowires. Sensors and Actuators B: Chemical, 2019, 281, 670-678.	4.0	63
21	Multiselective visual gas sensor using nickel oxide nanowires as chemiresistor. Sensors and Actuators B: Chemical, 2018, 255, 2785-2793.	4.0	42
22	Selective discrimination of hazardous gases using one single metal oxide resistive sensor. Sensors and Actuators B: Chemical, 2018, 277, 121-128.	4.0	54
23	Selective hydrogen sensor for liquefied petroleum gas steam reforming fuel cell systems. International Journal of Hydrogen Energy, 2017, 42, 740-748.	3.8	23
24	Fabrication of Electrochemical Electrodes Based on Platinum and (ext{ZnO}) Nanofibers for Biosensing Applications. Communications in Physics, 2017, 27, 221.	0.0	1
25	Functional Devices for Clean Energy and Advanced Sensor Applications. Journal of Nanomaterials, 2016, 2016, 1-2.	1.5	0
26	Functionalized ZnO Microbelt as Improved CO Sensor. Procedia Engineering, 2016, 168, 1090-1093.	1.2	0
27	Dual-selective hydrogen and ethanol sensor for steam reforming systems. Sensors and Actuators B: Chemical, 2016, 236, 1011-1019.	4.0	26
28	<i>A Special Section on</i> Nanomaterials for an Environment 2.0. Journal of Nanoscience and Nanotechnology, 2016, 16, 7849-7851.	0.9	1
29	Hydrothermal Growth and Hydrogen Selective Sensing of Nickel Oxide Nanowires. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	15
30	Comparative gas-sensing performance of 1D and 2D ZnO nanostructures. Sensors and Actuators B: Chemical, 2015, 220, 1152-1160.	4.0	81
31	Depletion layer and dimensionality of ZnO nanostructures. , 2015, , .		1
32	Polycrystalline NiO Nanowires: Scalable Growth and Ethanol Sensing. Procedia Engineering, 2015, 120, 427-434.	1.2	19
33	ZnO Nanowires-C Microfiber Hybrid Nanosensor for Liquefied Petroleum Gas Detection. Journal of Nanoscience and Nanotechnology, 2014, 14, 5088-5094.	0.9	1
34	H2 sensing properties of two-dimensional zinc oxide nanostructures. Talanta, 2014, 122, 201-208.	2.9	39
35	Size-dependent response of single-nanowire gas sensors. Sensors and Actuators B: Chemical, 2012, 163, 146-152.	4.0	112
36	Zinc oxide nanowires on carbon microfiber as flexible gas sensor. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1098-1102.	1.3	51

3

MATTEO TONEZZER

#	Article	IF	CITATIONS
37	Experimental and Numerical Study of Pentacene Molecular Beam Seeded in the Free Jet of Helium. , 2011, , .		1
38	Role of kinetic energy of impinging molecules in the α-sexithiophene growth. Thin Solid Films, 2011, 519, 4110-4113.	0.8	6
39	Optimizing Nozzle Geometry for Controlling Properties of Molecular Beam with Heavy Organic Molecules. , 2011, , .		0
40	Integrated zinc oxide nanowires/carbon microfiber gas sensors. Sensors and Actuators B: Chemical, 2010, 150, 517-522.	4.0	26
41	Solid state dye sensitized solar cells based on supersonic beam deposition of organic, inorganic cluster assembled, and nanohybrid materials. Journal of Renewable and Sustainable Energy, 2010, 2, 053106.	0.8	3
42	Supersonic molecular beams deposition of $\hat{l}\pm$ -quaterthiophene: Enhanced growth control and devices performances. Organic Electronics, 2009, 10, 521-526.	1.4	11
43	Vapor–Solid–Solid Growth Mechanism Driven by Epitaxial Match between Solid AuZn Alloy Catalyst Particles and ZnO Nanowires at Low Temperatures. Advanced Materials, 2008, 20, 1499-1504.	11.1	60
44	OFET for gas sensing based on SuMBE grown pentacene films. Solid-State Electronics, 2008, 52, 417-421.	0.8	8
45	Novel nano-hybrid gas sensor based on n-TiO2 functionalized by phthalocyanines via supersonic beam co-deposition: Performance and application to automotive air quality. , 2008, , .		2
46	Utilization of polyvinyl amine hydrolysis product in enhancing the catalytic properties of Co3O4 nanowires: toward potentiometric glucose bio-sensing application. Journal of Materials Science: Materials in Electronics, 0, , 1.	1.1	0