James Hower

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9428580/james-hower-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 264
 13,776
 67
 108

 papers
 citations
 h-index
 g-index

 270
 15,840
 5.6
 6.93

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
264	Aspects of rare earth element enrichment in Allegheny Plateau coals, Pennsylvania, USA. <i>Applied Geochemistry</i> , 2022 , 136, 105150	3.5	1
263	Origin of the tuff parting and associated enrichments of Zr, REY, redox-sensitive and other elements in the Early Miocene coal of the Siniy Utyes Basin, southwestern Primorye, Russia. <i>International Journal of Coal Geology</i> , 2022 , 250, 103913	5.5	О
262	Resources from coal beneficiation waste: Chemistry and petrology of the Ayrshire coal tailings ponds, Chandler, Indiana. <i>Fuel</i> , 2022 , 313, 123054	7.1	O
261	A review of rare earth elements and yttrium in coal ash: Content, modes of occurrences, combustion behavior, and extraction methods. <i>Progress in Energy and Combustion Science</i> , 2022 , 88, 10	0934	11
260	Mineralogical and geochemical characteristics of tonsteins from the Middle Jurassic Yan'an Formation, Ordos Basin, North China. <i>International Journal of Coal Geology</i> , 2022 , 253, 103968	5.5	O
259	Geochemical characteristics and paleoclimate implication of Middle Jurassic coal in the Ordos Basin, China. <i>Ore Geology Reviews</i> , 2022 , 144, 104848	3.2	0
258	Granite-bauxite provenance of abnormally enriched boehmite and critical elements (Nb, Ta, Zr, Hf and Ga) in coals from the Eastern Surface Mine, Ningwu Coalfield, Shanxi Province, China. <i>Journal of Geochemical Exploration</i> , 2022 , 107016	3.8	1
257	Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: Implication for coal depositional environments. <i>Energy Geoscience</i> , 2022 , 3, 300-313	5.8	0
256	Petrology of the Fire Clay coal, Bear Branch, Perry County, Kentucky. <i>International Journal of Coal Geology</i> , 2021 , 249, 103891	5.5	O
255	Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium. <i>Ore Geology Reviews</i> , 2021 , 139, 104582	3.2	1
254	Mineral Matter in the Late Permian C1 Coal from Yunnan Province, China, with Emphasis on Its Origins and Modes of Occurrence. <i>Minerals (Basel, Switzerland)</i> , 2021 , 11, 19	2.4	8
253	Rapid Removal of PFOA and PFOS via Modified Industrial Solid Waste: Mechanisms and Influences of Water Matrices. <i>Chemical Engineering Journal</i> , 2021 , 433, 133271	14.7	2
252	Distribution of Rare Earth Elements in the Illinois Basin Coals. <i>Mining, Metallurgy and Exploration</i> , 2021 , 38, 1645-1663	1.1	3
251	Volcanic emissions and atmospheric pollution: A study of nanoparticles. <i>Geoscience Frontiers</i> , 2021 , 12, 746-755	6	14
250	Possibilities of using silicate rock powder: An overview. <i>Geoscience Frontiers</i> , 2021 , 13, 101185	6	4
249	Distribution of rare earth elements in fly ash derived from the combustion of Illinois Basin coals. <i>Fuel</i> , 2021 , 289, 119990	7.1	5
248	Geochemistry and petrology of coal and coal fly ash from a thermal power plant in India. <i>Fuel</i> , 2021 , 291, 120122	7.1	2

(2021-2021)

247	Metal-Containing Nanoparticles in Low-Rank Coal-Derived Fly Ash from China: Characterization and Implications toward Human Lung Toxicity. <i>Environmental Science & Environmental Science & Environment</i>	4 ^{10.3}	4
246	Migmatite-like textures in anthracite: Further evidence for low-grade metamorphic melting and resolidification in high-rank coals. <i>Geoscience Frontiers</i> , 2021 , 12, 101122	6	3
245	Geochemistry, mineralogy and thermal analyses of Cretaceous coals from the Benue Trough basin Nigeria: Reconnaissance assessments. <i>Journal of African Earth Sciences</i> , 2021 , 178, 104167	2.2	0
244	The Tarim Basin, China, a prospect for plume-related Zr(Hf)-Nb(Ta)-REY-Ga-U mineralization. <i>Ore Geology Reviews</i> , 2021 , 133, 104081	3.2	3
243	Portable dehumidifiers as an original matrix for the study of inhalable nanoparticles in school. <i>Chemosphere</i> , 2021 , 262, 127295	8.4	2
242	Estimation of heavy and light rare earth elements of coal by intelligent methods. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects,</i> 2021 , 43, 70-79	1.6	4
241	Titanium nanoparticles in sedimented dust aggregates from urban children parks around coal ashes wastes. <i>Fuel</i> , 2021 , 285, 119162	7.1	7
240	Mercury stable isotope fractionation during gaseous elemental mercury adsorption onto coal fly ash particles: Experimental and field observations. <i>Journal of Hazardous Materials</i> , 2021 , 405, 124280	12.8	1
239	Rare Earth-bearing particles in fly ash carbons: Examples from the combustion of eastern Kentucky coals. <i>Energy Geoscience</i> , 2021 , 2, 90-98	5.8	6
238	Artisanal ceramic factories using wood combustion: A nanoparticles and human health study. <i>Geoscience Frontiers</i> , 2021 , 13, 101151	6	2
237	Deposition of nanoparticles on school eyeglasses in urban and rural areas: A methodology for a more real assessment of the possible impacts. <i>Geoscience Frontiers</i> , 2021 , 101135	6	1
236	Sustainable Release of Macronutrients to Black Oat and Maize Crops from Organically-Altered Dacite Rock Powder. <i>Natural Resources Research</i> , 2021 , 30, 1941-1953	4.9	1
235	Distribution of rare earth elements in the pilot-scale processing of fly ashes derived from eastern Kentucky coals: Comparisons of the feed and processed ashes. <i>Fuel</i> , 2021 , 295, 120562	7.1	7
234	The key roles of Fe-bearing minerals on arsenic capture and speciation transformation during high-As bituminous coal combustion: Experimental and theoretical investigations. <i>Journal of Hazardous Materials</i> , 2021 , 415, 125610	12.8	10
233	Modes of occurrence of elements in coal: A critical evaluation. <i>Earth-Science Reviews</i> , 2021 , 222, 103815	5 10.2	16
232	Lithium and redox-sensitive (Ge, U, Mo, V) element mineralization in the Pennsylvanian coals from the Huangtupo coalfield, Shanxi, northern China: With emphasis on the interaction of infiltrating seawater and exfiltrating groundwater. <i>Fuel</i> , 2021 , 300, 120948	7.1	8
231	Signatures of rare earth element distributions in fly ash derived from the combustion of Central Appalachian, Illinois, and Powder River basin coals. <i>Fuel</i> , 2021 , 301, 121048	7.1	3
230	Contrasts in maceral textures in progressive metamorphism versus near-surface hydrothermal metamorphism. <i>International Journal of Coal Geology</i> , 2021 , 246, 103840	5.5	7

229	Distribution of rare earth elements and other critical elements in beneficiated Pennsylvania anthracites. <i>Fuel</i> , 2021 , 304, 121400	7.1	7
228	Soft modelling of the Hardgrove grindability index of bituminous coals: An overview. <i>International Journal of Coal Geology</i> , 2021 , 247, 103846	5.5	O
227	Rare earth elements study of Cretaceous coals from Benue Trough basin, Nigeria: Modes of occurrence for greater sustainability of mining. <i>Fuel</i> , 2021 , 304, 121468	7.1	1
226	Nanomineralogy of evaporative precipitation of efflorescent compounds from coal mine drainage. <i>Geoscience Frontiers</i> , 2020 , 12, 101003-101003	6	6
225	Geochemical partitioning from pulverized coal to fly ash and bottom ash. Fuel, 2020, 279, 118542	7.1	18
224	Geochemistry, petrology, and palynology of the Princess No. 3 coal, Greenup County, Kentucky. <i>International Journal of Coal Science and Technology</i> , 2020 , 7, 633-651	4.5	4
223	Thermal properties of Pennsylvania anthracite. <i>Fuel</i> , 2020 , 266, 117101	7.1	8
222	Mineralogy of a rare earth element-rich Manchester coal lithotype, Clay County, Kentucky. <i>International Journal of Coal Geology</i> , 2020 , 220, 103413	5.5	14
221	Distribution of Lanthanides, Yttrium, and Scandium in the Pilot-Scale Beneficiation of Fly Ashes Derived from Eastern Kentucky Coals. <i>Minerals (Basel, Switzerland)</i> , 2020 , 10, 105	2.4	20
220	Evidence for multiple sources for inorganic components in the Tucheng coal deposit, western Guizhou, China and the lack of critical-elements. <i>International Journal of Coal Geology</i> , 2020 , 223, 10346	58 ^{5.5}	20
219	Leaching behavior of trace elements from fly ashes of five Chinese coal power plants. <i>International Journal of Coal Geology</i> , 2020 , 219, 103381	5.5	24
218	Characterization of superhigh-organic-sulfur Ra coal, Istria, Croatia, and its environmental implication. <i>International Journal of Coal Geology</i> , 2020 , 217, 103344	5.5	15
217	Organic associations of non-mineral elements in coal: A review. <i>International Journal of Coal Geology</i> , 2020 , 218, 103347	5.5	68
216	Recognition of peat depositional environments in coal: A review. <i>International Journal of Coal Geology</i> , 2020 , 219, 103383	5.5	108
215	History of applied coal petrology in the United States. IV. Reflections on the centennial of the introduction of coal petrology to North America. <i>International Journal of Coal Geology</i> , 2020 , 229, 1035	7 ē ·5	3
214	Could hot fluids be the cause of natural pyrolysis at the ragged edge of Herrin coal, Millport 7 🛭 🗘 quadrangle, Hopkins County, Kentucky?. <i>International Journal of Coal Geology</i> , 2020 , 231, 103603	5.5	2
213	Aspects of rare earth element enrichment in Central Appalachian coals. <i>Applied Geochemistry</i> , 2020 , 120, 104676	3.5	8
212	Study Relationship Between the Coal Thermoplastic Factor With Its Organic and Inorganic Properties by the Support Vector Regression Method. <i>International Journal of Coal Preparation and Utilization</i> , 2020 , 40, 743-754	1.2	4

(2018-2020)

2	211	Bio-geochemical evolution and critical element mineralization in the Cretaceous-Cenozoic coals from the southern Far East Russia and northeastern China. <i>Applied Geochemistry</i> , 2020 , 117, 104602	3.5	11
2	210	Petrographic characteristics of the brecciated coals from Panxian county, Guizhou, southwestern China. <i>Fuel</i> , 2019 , 243, 1-9	7.1	4
2	209	Environmental evaluation and nano-mineralogical study of fresh and unsaturated weathered coal fly ashes. <i>Science of the Total Environment</i> , 2019 , 663, 177-188	10.2	31
2	208	Nano-Scale Rare Earth Distribution in Fly Ash Derived from the Combustion of the Fire Clay Coal, Kentucky. <i>Minerals (Basel, Switzerland)</i> , 2019 , 9, 206	2.4	17
2	207	Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes. <i>Environmental Science & Environmental Science </i>	10.3	58
2	206	Feasibility study of preparation of carbon quantum dots from Pennsylvania anthracite and Kentucky bituminous coals. <i>Fuel</i> , 2019 , 243, 433-440	7.1	26
2	205	Characterization of stoker ash from the combustion of high-lanthanide coal at a Kentucky bourbon distillery. <i>International Journal of Coal Geology</i> , 2019 , 213, 103260	5.5	8
2	204	The importance of minerals in coal as the hosts of chemical elements: A review. <i>International Journal of Coal Geology</i> , 2019 , 212, 103251	5.5	131
2	203	Leaching characteristics of alkaline coal combustion by-products: A case study from a coal-fired power plant, Hebei Province, China. <i>Fuel</i> , 2019 , 255, 115710	7.1	21
2	202	Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. <i>Ore Geology Reviews</i> , 2019 , 115, 103184	3.2	22
2	201	Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China. <i>International Journal of Coal Geology</i> , 2019 , 215, 103304	5.5	41
2	200	Structure Determination, Functional Characterization, and Biosynthetic Implications of Nybomycin Metabolites from a Mining Reclamation Site-Associated. <i>Journal of Natural Products</i> , 2019 , 82, 3469-347	7 8 .9	6
1	199	Notes on the mechanisms of coal metamorphism in the Pennsylvania Anthracite Fields. <i>International Journal of Coal Geology</i> , 2019 , 202, 161-170	5.5	22
1	198	Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction. <i>International Journal of Coal Geology</i> , 2019 , 203, 1-14	5.5	98
1	197	A novel nature-inspired optimization based neural network simulator to predict coal grindability index. <i>Engineering Computations</i> , 2018 , 35, 1003-1048	1.4	6
1	196	Modes of occurrence and origin of mineral matter in the Palaeogene coal (No. 19-2) from the Hunchun Coalfield, Jilin Province, China. <i>International Journal of Coal Geology</i> , 2018 , 189, 94-110	5.5	42
1	195	Rare earth element associations in the Kentucky State University stoker ash. <i>International Journal of Coal Geology</i> , 2018 , 189, 75-82	5.5	38
1	194	Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky. <i>International Journal of Coal Geology</i> , 2018 , 192, 73-82	5.5	16

193	Relationships between noble metals as potential coal combustion products and conventional coal properties. <i>Fuel</i> , 2018 , 226, 345-349	7.1	10
192	Ranking Coal Ash Materials for Their Potential to Leach Arsenic and Selenium: Relative Importance of Ash Chemistry and Site Biogeochemistry. <i>Environmental Engineering Science</i> , 2018 , 35, 728-738	2	19
191	Geochemistry and Nanomineralogy of Feed Coals and Their Coal Combustion Residues from Two Different Coal-Based Industries in Northeast India. <i>Energy & Energy & Ener</i>	4.1	14
190	Origin of a kaolinite-NH4-illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng Coalfield, Qinshui Basin, Northern China. <i>International Journal of Coal Geology</i> , 2018 , 185, 61-78	5.5	41
189	A model for Nb@rREE@a enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes. <i>Lithos</i> , 2018 , 302-303, 359-369	2.9	35
188	Rare earth minerals in a Bo tonsteinßection of the Dean (Fire Clay) coal, Knox County, Kentucky. <i>International Journal of Coal Geology</i> , 2018 , 193, 73-86	5.5	33
187	A comparative study on the mineralogy, chemical speciation, and combustion behavior of toxic elements of coal beneficiation products. <i>Fuel</i> , 2018 , 228, 297-308	7.1	24
186	Enrichment of Bi-Be-Mo-Cd-Pb-Nb-Ga, REEs and Y in the Permian coals of the Huainan Coalfield, Anhui, China: Discussion. <i>Ore Geology Reviews</i> , 2018 , 102, 937-939	3.2	5
185	Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS). <i>International Journal of Coal Geology</i> , 2018 , 191, 152-156	5.5	52
184	Valuable elements in Chinese coals: a review. <i>International Geology Review</i> , 2018 , 60, 590-620	2.3	125
183	Mineralogy and geochemistry of ash and slag from coal gasification in China: a review. <i>International Geology Review</i> , 2018 , 60, 717-735	2.3	18
182	Coal as a promising source of critical elements: Progress and future prospects. <i>International Journal of Coal Geology</i> , 2018 , 186, 155-164	5.5	266
181	Stone coal in China: a review. International Geology Review, 2018, 60, 736-753	2.3	45
180	Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler. <i>Environmental Pollution</i> , 2018 , 242, 1950-1960	9.3	32
179	Comments on Geochemical Characteristics of Rare-Metal, Rare-Scattered, and Rare-Earth Elements and Minerals in the Late Permian Coals from the Moxinpo Mine, Chongqing, China. <i>Energy & Euels</i> , 2018 , 32, 8891-8894	4.1	5
178	Modes of occurrence of non-mineral inorganic elements in lignites from the Mile Basin, Yunnan Province, China. <i>Fuel</i> , 2018 , 222, 146-155	7.1	32
177	Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. <i>International Journal of Coal Geology</i> , 2018 , 197, 84-114	5.5	35
176	Coal geology in China: an overview. <i>International Geology Review</i> , 2018 , 60, 531-534	2.3	26

175	Differences in bulk and microscale yttrium speciation in coal combustion fly ash. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1390-1403	4.3	17
174	Determination of Chemical Speciation of Arsenic and Selenium in High-As Coal Combustion Ash by X-ray Photoelectron Spectroscopy: Examples from a Kentucky Stoker Ash. <i>ACS Omega</i> , 2018 , 3, 17637-1	7645	31
173	Influence of selected factors of Polish coking coals on the Hardgrove Grindability Index (HGI). <i>International Journal of Coal Preparation and Utilization</i> , 2018 , 1-14	1.2	6
172	Ultrafine Mineral Associations in Superhigh-Organic-Sulfur Kentucky Coals. ACS Omega, 2018, 3, 12179-	133,87	3
171	Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash. <i>International Journal of Coal Geology</i> , 2018 , 195, 75-83	5.5	73
170	Estimating REY content of eastern Kentucky coal samples based on their associated ash elements. Journal of Rare Earths, 2018 , 36, 1234-1238	3.7	9
169	Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. <i>International Journal of Coal Geology</i> , 2018 , 196, 106-114	5.5	71
168	Maceral Liberation and Distribution of Bituminous Coal for Predicting Maceral-Separation Performance. <i>International Journal of Coal Preparation and Utilization</i> , 2017 , 37, 237-251	1.2	7
167	Size-Dependent Variations in Fly Ash Trace Element Chemistry: Examples from a Kentucky Power Plant and with Emphasis on Rare Earth Elements. <i>Energy & Energy & Energ</i>	4.1	28
166	Mccrearamycins A-D, Geldanamycin-Derived Cyclopentenone Macrolactams from an Eastern Kentucky Abandoned Coal Mine Microbe. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2994-299	98 ^{6.4}	27
165	Mccrearamycins A D , Geldanamycin-Derived Cyclopentenone Macrolactams from an Eastern Kentucky Abandoned Coal Mine Microbe. <i>Angewandte Chemie</i> , 2017 , 129, 3040-3044	3.6	4
164	Mississippian (Serpukhovian; Chesterian Stage) coals from the Fluorspar District, Crittenden and Caldwell counties, Kentucky: Petrological and palynological compositions and their indications for peat-producing ecosystems. <i>International Journal of Coal Geology</i> , 2017 , 174, 23-30	5.5	8
163	Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield, Guangxi, China. <i>Ore Geology Reviews</i> , 2017 , 88, 235-250	3.2	78
162	Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits. <i>Chemical Geology</i> , 2017 , 463, 29-49	4.2	50
161	Coal-derived unburned carbons in fly ash: A review. International Journal of Coal Geology, 2017, 179, 11-	- 257 .5	116
160	Organic geochemistry of funginite (Miocene, Eel River, Mendocino County, California, USA) and macrinite (Cretaceous, Inner Mongolia, China). <i>International Journal of Coal Geology</i> , 2017 , 179, 60-71	5.5	4
159	Chemistry and petrology of paired feed coal and combustion ash from anthracite-burning stoker boilers. <i>Fuel</i> , 2017 , 199, 438-446	7.1	13
158	Bi- and Tetracyclic Spirotetronates from the Coal Mine Fire Isolate Streptomyces sp. LC-6-2. <i>Journal of Natural Products</i> , 2017 , 80, 1141-1149	4.9	26

157	Modeling of gross calorific value based on coal properties by support vector regression method. <i>Modeling Earth Systems and Environment</i> , 2017 , 3, 1	3.2	17
156	Spoxazomicin D and Oxachelin C, Potent Neuroprotective Carboxamides from the Appalachian Coal Fire-Associated Isolate Streptomyces sp. RM-14-6. <i>Journal of Natural Products</i> , 2017 , 80, 2-11	4.9	28
155	Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. <i>Earth-Science Reviews</i> , 2017 , 175, 44-74	10.2	103
154	Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. <i>International Journal of Coal Geology</i> , 2017 , 184, 1-10	5.5	132
153	Discovery and ramifications of incidental Magnli phase generation and release from industrial coal-burning. <i>Nature Communications</i> , 2017 , 8, 194	17.4	30
152	Naturally Occurring Radioactive Materials in Uranium-Rich Coals and Associated Coal Combustion Residues from China. <i>Environmental Science & Enp.; Technology</i> , 2017 , 51, 13487-13493	10.3	30
151	Impact of coal source changes on mercury content in fly ash: Examples from a Kentucky power plant. <i>International Journal of Coal Geology</i> , 2017 , 170, 2-6	5.5	13
150	Rare Earth Element Distribution in Fly Ash Derived from the Fire Clay Coal, Kentucky. <i>Coal Combustion and Gasification Products</i> , 2017 , 9, 22-33		37
149	Ponded and Landfilled Fly Ash as a Source of Rare Earth Elements from a Kentucky Power Plant. <i>Coal Combustion and Gasification Products</i> , 2017 , 9, 1-21		23
148	Non-isothermal TG-DSC study on prediction of caking properties of vitrinite-rich concentrates of bituminous coals. <i>Fuel Processing Technology</i> , 2017 , 156, 500-504	7.2	17
147	Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. <i>Gondwana Research</i> , 2016 , 29, 60-82	5.1	104
146	Devolatilization and kinetics of maceral concentrates of bituminous coals. <i>Fuel Processing Technology</i> , 2016 , 154, 147-155	7.2	12
145	Explaining relationships among various coal analyses with coal grindability index by Random Forest. <i>International Journal of Mineral Processing</i> , 2016 , 155, 140-146		36
144	Explaining relationships between coke quality index and coal properties by Random Forest method. <i>Fuel</i> , 2016 , 182, 754-760	7.1	48
143	Trends in the Rare Earth Element Content of U.SBased Coal Combustion Fly Ashes. <i>Environmental Science & Environmental Scien</i>	10.3	140
142	Distribution of rare earth elements in eastern Kentucky coals: Indicators of multiple modes of enrichment?. <i>International Journal of Coal Geology</i> , 2016 , 160-161, 73-81	5.5	107
141	Notes on Contributions to the Science of Rare Earth Element Enrichment in Coal and Coal Combustion Byproducts. <i>Minerals (Basel, Switzerland)</i> , 2016 , 6, 32	2.4	151
140	Clay Mineralogy of Coal-Hosted Nb-Zr-REE-Ga Mineralized Beds from Late Permian Strata, Eastern Yunnan, SW China: Implications for Paleotemperature and Origin of the Micro-Quartz. <i>Minerals</i> (Basel, Switzerland), 2016 , 6, 45	2.4	24

139	A review of anomalous rare earth elements and yttrium in coal. <i>International Journal of Coal Geology</i> , 2016 , 159, 82-95	5.5	262
138	Water and soil quality at two eastern-Kentucky (USA) coal fires. <i>Environmental Earth Sciences</i> , 2016 , 75, 1	2.9	13
137	Fundamental evaluation of petrographic effects on coal grindability by seasonal autoregressive integrated moving average (SARIMA). <i>International Journal of Mineral Processing</i> , 2016 , 154, 94-99		5
136	A statistical assessment of carbon monoxide emissions from the Truman Shepherd coal fire, Floyd County, Kentucky. <i>International Journal of Coal Geology</i> , 2015 , 144-145, 88-97	5.5	12
135	Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2IIO2-mixed hydrothermal solutions. <i>International Journal of Coal Geology</i> , 2015 , 152, 19-46	5.5	114
134	Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. <i>Ore Geology Reviews</i> , 2015 , 71, 318-349	3.2	99
133	Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. <i>Ore Geology Reviews</i> , 2015 , 70, 1-30	3.2	164
132	Microanalysis of barkinite from Chinese coals of high volatile bituminous rank. <i>International Journal of Coal Geology</i> , 2015 , 141-142, 103-108	5.5	10
131	Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. <i>International Journal of Coal Geology</i> , 2015 , 144-145, 23-47	5.5	88
130	Terfestatins B and C, New p-Terphenyl Glycosides Produced by Streptomyces sp. RM-5-8. <i>Organic Letters</i> , 2015 , 17, 2796-9	6.2	34
129	Naturally Occurring Radioactive Materials in Coals and Coal Combustion Residuals in the United States. <i>Environmental Science & Environmental Science </i>	10.3	54
128	Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. <i>International Journal of Coal Geology</i> , 2015 , 137, 92-110	5.5	109
127	Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): a multi-faceted analytical approach. <i>International Journal of Coal Geology</i> , 2015 , 137, 19-37	5.5	78
126	Enrichment of UBeMoReV in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. <i>Mineralium Deposita</i> , 2015 , 50, 159-186	4.8	214
125	Observations and Assessment of Fly Ashes from High-Sulfur Bituminous Coals and Blends of High-Sulfur Bituminous and Subbituminous Coals: Environmental Processes Recorded at the Macroand Nanometer Scale. <i>Energy & Doals</i> : 29, 7168-7177	4.1	71
124	Notes on the Potential for the Concentration of Rare Earth Elements and Yttrium in Coal Combustion Fly Ash. <i>Minerals (Basel, Switzerland)</i> , 2015 , 5, 356-366	2.4	42
123	Determination of As and Se in coal and coal combustion products using closed vessel microwave digestion and collision/reaction cell technology (CCT) of inductively coupled plasma mass spectrometry (ICP-MS). <i>International Journal of Coal Geology</i> , 2014 , 124, 1-4	5.5	117
122	Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals. <i>International Journal of Coal Geology</i> , 2014 , 121, 26-34	5.5	81

121	Ruthmycin, a new tetracyclic polyketide from Streptomyces sp. RM-4-15. Organic Letters, 2014, 16, 456	5-96.2	20
120	Mullinamides A and B, new cyclopeptides produced by the Ruth Mullins coal mine fire isolate Streptomyces sp. RM-27-46. <i>Journal of Antibiotics</i> , 2014 , 67, 571-5	3.7	24
119	Mineralogy and geochemistry of coal wastes from the Starzykowiec coal-waste dump (Upper Silesia, Poland). <i>International Journal of Coal Geology</i> , 2014 , 127, 42-55	5.5	37
118	Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. <i>International Journal of Coal Geology</i> , 2014 , 122, 110-128	5.5	120
117	Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. <i>International Journal of Coal Geology</i> , 2014 , 121, 79-97	5.5	140
116	Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. <i>International Journal of Coal Geology</i> , 2014 , 122, 50-60	5.5	90
115	Notes on the origin of the resinite-rich pine needlellithotype of the Cretaceous Cambria coal, Weston County, Wyoming. <i>International Journal of Coal Geology</i> , 2014 , 130, 66-69	5.5	2
114	A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. <i>International Journal of Coal Geology</i> , 2014 , 130, 33-52	5.5	96
113	Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. <i>International Journal of Coal Geology</i> , 2014 , 121, 53-78	5.5	158
112	The native production of the sesquiterpene isopterocarpolone by Streptomyces sp. RM-14-6. <i>Natural Product Research</i> , 2014 , 28, 337-9	2.3	15
111	Notes on the relationship between microlithotype composition and Hardgrove grindability index for rank suites of Eastern Kentucky (Central Appalachian) coals. <i>International Journal of Coal Geology</i> , 2014 , 131, 109-112	5.5	13
110	Venturicidin C, a new 20-membered macrolide produced by Streptomyces sp. TS-2-2. <i>Journal of Antibiotics</i> , 2014 , 67, 223-30	3.7	28
109	Obituary for Dr. William Spackman (1919\(\mathbb{Q}\)014). <i>International Journal of Coal Geology</i> , 2014 , 128-129, 165-167	5.5	
108	The occurrence of gold in fly ash derived from high-Ge coal. <i>Mineralium Deposita</i> , 2014 , 49, 1-6	4.8	31
107	Trends in Coal Utilization and Coal Combustion Product Production in Kentucky: Results of the 2012 Survey of Power Plants. <i>Coal Combustion and Gasification Products</i> , 2014 , 6, 35-41		5
106	Frenolicins C-G, pyranonaphthoquinones from Streptomyces sp. RM-4-15. <i>Journal of Natural Products</i> , 2013 , 76, 1441-7	4.9	50
105	Macrinite and funginite forms in Cretaceous Menefee Formation anthracite, Cerrillos coalfield, New Mexico. <i>International Journal of Coal Geology</i> , 2013 , 114, 54-59	5.5	17
104	Vanadium and Nickel Speciation in Pulverized Coal and Petroleum Coke Co-combustion. <i>Energy</i> & <i>amp; Fuels</i> , 2013 , 27, 1194-1203	4.1	28

103	Herbimycins D-F, ansamycin analogues from Streptomyces sp. RM-7-15. <i>Journal of Natural Products</i> , 2013 , 76, 1619-26	4.9	31
102	Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. <i>International Journal of Coal Geology</i> , 2013 , 105, 60-84	5.5	157
101	Macrinite forms in Pennsylvanian coals. <i>International Journal of Coal Geology</i> , 2013 , 116-117, 172-181	5.5	23
100	Gaseous emissions and sublimates from the Truman Shepherd coal fire, Floyd County, Kentucky: A re-investigation following attempted mitigation of the fire. <i>International Journal of Coal Geology</i> , 2013 , 116-117, 63-74	5.5	103
99	An investigation of Wulantuga coal (Cretaceous, Inner Mongolia) macerals: Paleopathology of faunal and fungal invasions into wood and the recognizable clues for their activity. <i>International Journal of Coal Geology</i> , 2013 , 114, 44-53	5.5	44
98	Notes on the origin of altered macerals in the Ragged Edge of the Pennsylvanian (Asturian) Herrin coalbed, Western Kentucky. <i>International Journal of Coal Geology</i> , 2013 , 115, 24-40	5.5	6
97	Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. <i>Applied Geochemistry</i> , 2013 , 31, 1-11	3.5	196
96	The occurrence of hazardous volatile elements and nanoparticles in Bulgarian coal fly ashes and the effect on human health exposure. <i>Science of the Total Environment</i> , 2012 , 416, 513-26	10.2	82
95	Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly ash. <i>Science of the Total Environment</i> , 2012 , 419, 250-64	10.2	53
94	The further adventures of Tin Man: Vertical temperature gradients at the Lotts Creek coal mine fire, Perry County, Kentucky. <i>International Journal of Coal Geology</i> , 2012 , 101, 16-20	5.5	9
93	Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. <i>International Journal of Coal Geology</i> , 2012 , 94, 3-21	5.5	677
92	Geochemistry of carbon nanotube assemblages in coal fire soot, Ruth Mullins fire, Perry County, Kentucky. <i>International Journal of Coal Geology</i> , 2012 , 94, 206-213	5.5	55
91	Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. <i>International Journal of Coal Geology</i> , 2012 , 94, 250-270	5.5	178
90	Illite crystallinity and coal metamorphism for selected central Appalachian coals and shales. <i>International Journal of Coal Geology</i> , 2012 , 94, 167-172	5.5	8
89	Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. <i>International Journal of Coal Geology</i> , 2012 , 94, 314-325	5.5	115
88	Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. <i>International Journal of Coal Geology</i> , 2012 , 90-91, 72-99	5.5	197
87	Coal deposits as potential alternative sources for lanthanides and yttrium. <i>International Journal of Coal Geology</i> , 2012 , 94, 67-93	5.5	472
86	Petrographic examination of coal-combustion fly ash. <i>International Journal of Coal Geology</i> , 2012 , 92, 90-97	5.5	74

85	Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. <i>International Journal of Coal Geology</i> , 2012 , 98, 10-40	5.5	189
84	Estimation of Some Coal Parameters Depending on Petrographic and Inorganic Analyses by Using Genetic Algorithm and Adaptive Neuro-Fuzzy Inference Systems. <i>Energy Exploration and Exploitation</i> , 2011 , 29, 479-494	2.1	16
83	Petrographic, geochemical, and mycological aspects of Miocene coals from the Nov®y and HandlovImining districts, Slovakia. <i>International Journal of Coal Geology</i> , 2011 , 87, 268-281	5.5	33
82	Notes on the origin of inertinite macerals in coal: Evidence for fungal and arthropod transformations of degraded macerals. <i>International Journal of Coal Geology</i> , 2011 , 86, 231-240	5.5	79
81	Old Smokey coal fire, Floyd County, Kentucky: Estimates of gaseous emission rates. <i>International Journal of Coal Geology</i> , 2011 , 87, 150-156	5.5	39
80	Modes of Formation of Carbon Oxides [COx (x = 1 or 2)] from Coals during Atmospheric Storage. Part 2: Effect of Coal Rank on the Kinetics. <i>Energy & Damp; Fuels</i> , 2011 , 25, 5626-5631	4.1	10
79	Revisiting Coos Bay, Oregon: A re-examination of funginitefluminite relationships in Eocene subbituminous coals. <i>International Journal of Coal Geology</i> , 2011 , 85, 34-42	5.5	39
78	Studies of relationships between Free Swelling Index (FSI) and coal quality by regression and Adaptive Neuro Fuzzy Inference System. <i>International Journal of Coal Geology</i> , 2011 , 85, 65-71	5.5	34
77	Notes on the origin of inertinite macerals in coals: Funginite associations with cutinite and suberinite. <i>International Journal of Coal Geology</i> , 2011 , 85, 186-190	5.5	35
76	Nanominerals and ultrafine particles in sublimates from the Ruth Mullins coal fire, Perry County, Eastern Kentucky, USA. <i>International Journal of Coal Geology</i> , 2011 , 85, 237-245	5.5	89
75	Splint coals of the Central Appalachians: Petrographic and geochemical facies of the Peach Orchard No. 3 split coal bed, southern Magoffin County, Kentucky. <i>International Journal of Coal Geology</i> , 2011 , 85, 268-275	5.5	20
74	Estimation of free-swelling index based on coal analysis using multivariable regression and artificial neural network. <i>Fuel Processing Technology</i> , 2011 , 92, 349-355	7.2	31
73	Study Relationship between Inorganic and Organic Coal Analysis with Gross Calorific Value by Multiple Regression and ANFIS. <i>International Journal of Coal Preparation and Utilization</i> , 2011 , 31, 9-19	1.2	28
72	Mercury capture by native fly ash carbons in coal-fired power plants. <i>Progress in Energy and Combustion Science</i> , 2010 , 36,	33.6	198
71	Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. <i>International Journal of Coal Geology</i> , 2010 , 81, 320-332	5.5	242
70	Geologic controls on thermal maturity patterns in Pennsylvanian coal-bearing rocks in the Appalachian basin. <i>International Journal of Coal Geology</i> , 2010 , 81, 169-181	5.5	60
69	Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, Petrolini basin (southern Carpathian Mountains), Romania. <i>International Journal of Coal Geology</i> , 2010 , 82, 68-80	5.5	35
68	A new type of Nb (Ta) Ir (Hf) REEL a polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. <i>International Journal of Coal Geology</i> , 2010 , 83, 55-63	5.5	92

67	FunginiteEesinite associations in coal. International Journal of Coal Geology, 2010, 83, 64-72	5.5	31
66	Mineralogy and Leaching Characteristics of Coal Ash from a Major Brazilian Power Plant. <i>Coal Combustion and Gasification Products</i> , 2010 , 2, 51-65		30
65	Notes on the origin of inertinite macerals in coals: Observations on the importance of fungi in the origin of macrinite. <i>International Journal of Coal Geology</i> , 2009 , 80, 135-143	5.5	69
64	Prediction of Coal Grindability Based on Petrography, Proximate and Ultimate Analysis Using Neural Networks and Particle Swarm Optimization Technique. <i>Energy Exploration and Exploitation</i> , 2009 , 27, 201-212	2.1	5
63	Chemistry of coal and coal combustion products from Kentucky power plants: Results from the 2007 sampling, with emphasis on selenium. <i>Coal Combustion and Gasification Products</i> , 2009 , 1, 50-62		11
62	Nanoquartz in Late Permian C1 coal and the high incidence of female lung cancer in the Pearl River Origin area: a retrospective cohort study. <i>BMC Public Health</i> , 2008 , 8, 398	4.1	50
61	Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. <i>Chemical Geology</i> , 2008 , 255, 182-194	4.2	189
60	Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	63
59	Discussion on Characteristics of Fly Ashes from Full-Scale Coal-Fired Power Plants and Their Relationship to Mercury Adsorption by Lu et al <i>Energy & Does 1988</i> , 22, 1055-1058	4.1	5
58	Studies of the relationship between petrography and grindability for Kentucky coals using artificial neural network. <i>International Journal of Coal Geology</i> , 2008 , 73, 130-138	5.5	34
57	Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. <i>International Journal of Coal Geology</i> , 2008 , 74, 185-202	5.5	293
56	Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. <i>International Journal of Coal Geology</i> , 2008 , 75, 88-92	5.5	74
55	Coal combustion by-product quality at two stoker boilers: Coal source vs. fly ash collection system design. <i>International Journal of Coal Geology</i> , 2008 , 75, 248-254	5.5	33
54	Studies of relationship between petrography and elemental analysis with grindability for Kentucky coals. <i>Fuel</i> , 2008 , 87, 707-713	7.1	38
53	Prediction of coal grindability based on petrography, proximate and ultimate analysis using multiple regression and artificial neural network models. <i>Fuel Processing Technology</i> , 2008 , 89, 13-20	7.2	84
52	The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2007 , 67, 1433-7	4.4	24
51	Discovery of the superlarge gallium ore deposit in Jungar, Inner Mongolia, North China. <i>Science Bulletin</i> , 2006 , 51, 2243-2252		50
50	Major and Minor Element Distribution in Fly Ash from a Coal-Fired Utility Boiler in Kentucky. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2006 , 28, 79-95	1.6	18

49	Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. <i>International Journal of Coal Geology</i> , 2006 , 66, 253-270	5.5	263
48	Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. <i>International Journal of Coal Geology</i> , 2006 , 66, 217-226	5.5	160
47	Discussion: Li et al., Prediction of grindability with multivariable regression and neural network in Chinese coal. <i>Fuel</i> , 2006 , 85, 1307-1308	7.1	20
46	An Approach Toward a Combined Scheme for the Petrographic Classification of Fly Ash: Revision and Clarification. <i>Energy & Energy & Energy</i>	4.1	35
45	Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. <i>International Journal of Coal Geology</i> , 2005 , 61, 119-137	5.5	238
44	Mercury content of the Springfield coal, Indiana and Kentucky. <i>International Journal of Coal Geology</i> , 2005 , 63, 205-227	5.5	22
43	Arsenic-bearing pyrite and marcasite in the Fire Clay coal bed, Middle Pennsylvanian Breathitt Formation, eastern Kentucky. <i>International Journal of Coal Geology</i> , 2005 , 63, 27-35	5.5	53
42	Tracking mercury from the mine to the power plant: geochemistry of the Manchester coal bed, Clay County, Kentucky. <i>International Journal of Coal Geology</i> , 2004 , 57, 127-141	5.5	66
41	The cause of endemic fluorosis in western Guizhou Province, Southwest China. Fuel, 2004, 83, 2095-209	187.1	104
40	Impact of coal properties on coal combustion by-product quality: examples from a Kentucky power plant. <i>International Journal of Coal Geology</i> , 2004 , 59, 153-169	5.5	195
39	Geochemistry of the late Permian No. 30 coal seam, Zhijin Coalfield of Southwest China: influence of a siliceous low-temperature hydrothermal fluid. <i>Applied Geochemistry</i> , 2004 , 19, 1315-1330	3.5	127
38	The beneficiation of coal combustion ash. <i>Geological Society Special Publication</i> , 2004 , 236, 247-262	1.7	6
37	Clausthalite in coal. International Journal of Coal Geology, 2003, 53, 219-225	5.5	85
36	Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield, southern China. <i>International Journal of Coal Geology</i> , 2003 , 55, 1-26	5.5	112
35	Studies of the relationship between coal petrology and grinding properties. <i>International Journal of Coal Geology</i> , 2003 , 54, 253-260	5.5	48
34	Geochemical and mineralogical anomalies of the late Permian coal in the Zhijin coalfield of southwest China and their volcanic origin. <i>International Journal of Coal Geology</i> , 2003 , 55, 117-138	5.5	107
33	Arsenic and Mercury Partitioning in Fly Ash at a Kentucky Power Plant. <i>Energy & Down; Fuels</i> , 2003 , 17, 1028-1033	4.1	45
32	The Upper Hance coal bed in southeastern Kentucky: palynologic, geochemical, and petrographic evidence for environmental succession. <i>International Journal of Coal Geology</i> , 2002 , 49, 177-194	5.5	8

31	Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. <i>International Journal of Coal Geology</i> , 2002 , 51, 237-250	5.5	163
30	Controls on boron and germanium distribution in the low-sulfur Amos coal bed, Western Kentucky coalfield, USA. <i>International Journal of Coal Geology</i> , 2002 , 53, 27-42	5.5	54
29	Further examination of the ragged edge of the Herrin Coal Bed, Webster County, Western Kentucky Coal Field. <i>International Journal of Coal Geology</i> , 2001 , 46, 145-155	5.5	16
28	Brecciated and mineralized coals in Union County, Western Kentucky coal field. <i>International Journal of Coal Geology</i> , 2001 , 47, 223-234	5.5	30
27	Temporal and spatial variations in fly ash quality. Fuel Processing Technology, 2001, 73, 37-58	7.2	22
26	Discussion on origin of vanadium in coals: parts of the Western Kentucky (USA) No. 9 coal rich in vanadium. <i>Journal of the Geological Society</i> , 2000 , 157, 1257-1259	2.7	18
25	Mercury Capture by Fly Ash: Study of the Combustion of a High-Mercury Coal at a Utility Boiler. <i>Energy & Energy & Energ</i>	4.1	74
24	Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. <i>International Journal of Coal Geology</i> , 1999 , 39, 141-153	5.5	219
23	Changes in the quality of coal delivered to Kentucky power plants, 1978 to 1997: responses to Clean Air Act directives. <i>International Journal of Coal Geology</i> , 1999 , 41, 125-155	5.5	14
22	Petrology, mineralogy, and chemistry of magnetically-separated sized fly ash. <i>Fuel</i> , 1999 , 78, 197-203	7.1	74
21	Petrographic observations of Gieseler semi-cokes from high volatile bituminous coals. <i>Fuel</i> , 1999 , 78, 445-451	7.1	12
20	Changes in the quality of coal combustion by-products produced by Kentucky power plants, 1978 to 1997: consequences of Clean Air Act directives. <i>Fuel</i> , 1999 , 78, 701-712	7.1	37
19	Novel Separation of the Differing Forms of Unburned Carbon Present in Fly Ash Using Density Gradient Centrifugation. <i>Energy & Density</i> 3, 947-953	4.1	56
18	Magnitude of Minor Element Reduction through Beneficiation of Central Appalachian Coals. <i>Coal Preparation</i> , 1998 , 19, 213-229		8
17	The Role of Semifusinite in Plasticity Development for a Coking Coal. <i>Energy & amp; Fuels</i> , 1998 , 12, 104	10 ₄ 1£040	6 19
16	Characterization of fly ash from Kentucky power plants. <i>Fuel</i> , 1996 , 75, 403-411	7.1	73
15	Coal resources, production, and quality in the Eastern kentucky coal field: Perspectives on the future of steam coal production. <i>Nonrenewable Resources</i> , 1994 , 3, 216-236		9
14	Lithologic and geochemical investigations of the Fire Clay coal bed, southeastern Kentucky, in the vicinity of sandstone washouts. <i>International Journal of Coal Geology</i> , 1994 , 26, 95-115	5.5	20

13	Paleoecology of the Fire Clay coal bed in a portion of the Eastern Kentucky Coal Field. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994 , 106, 287-305	2.9	64
12	Petrographic and Geochemical Anatomy of Lithotypes from the Blue Gem Coal Bed, Southeastern Kentucky. <i>Energy & Energy &</i>	4.1	33
11	Appalachian anthracites. <i>Organic Geochemistry</i> , 1993 , 20, 619-642	3.1	29
10	Lithologic succession in the Path Fork coal bed (Breathitt Formation, Middle Pennsylvanian), southeastern Kentucky. <i>Organic Geochemistry</i> , 1992 , 18, 301-311	3.1	9
9	Geochemistry of the blue gem coal bed, Knox county, Kentucky. <i>International Journal of Coal Geology</i> , 1991 , 18, 211-231	5.5	30
8	Coal rank trends in the Central Appalachian coalfield: Virginia, West Virginia, and Kentucky. <i>Organic Geochemistry</i> , 1991 , 17, 161-173	3.1	22
7	Estimates of fluid properties of high volatile bituminous coals. <i>Fuel</i> , 1990 , 69, 1257-1270	7.1	15
6	Geochemistry of the Pond Creek coal bed, Eastern Kentucky coalfield. <i>International Journal of Coal Geology</i> , 1989 , 11, 205-226	5.5	66
5	Petrology of the River Gem coal bed, Whitley County, Kentucky. <i>International Journal of Coal Geology</i> , 1989 , 11, 227-245	5.5	25
4	Ragged edge of the Herrin (No. 11) coal, Western Kentucky. <i>International Journal of Coal Geology</i> , 1987 , 7, 1-20	5.5	29
3	Influence of microlithotype composition on hardgrove grindability for selected eastern Kentucky coals. <i>International Journal of Coal Geology</i> , 1987 , 7, 227-244	5.5	37
2	Maceral Partitioning through Beneficiation of Illinois Basin Coals. <i>Coal Preparation</i> , 1986 , 2, 149-164		7
1	Soils and spoils: mineralogy and geochemistry of mining and processing wastes from lead and zinc mining at the Gratz Mine, Owen County, Kentucky. <i>Journal of Soils and Sediments</i> ,1	3.4	О