List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/942850/publications.pdf Version: 2024-02-01

CANCLU

#	Article	IF	CITATIONS
1	Enhancing the dielectric and energy storage properties of lead-free Na0.5Bi0.5TiO3–BaTiO3 ceramics by adding K0.5Na0.5NbO3 ferroelectric. Ceramics International, 2022, 48, 22-31.	4.8	24
2	Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1â^'x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions. Journal of Materiomics, 2022, 8, 335-346.	5.7	39
3	Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics. Journal of the European Ceramic Society, 2022, 42, 944-953.	5.7	37
4	Achieving ultrahigh energy storage performance over a broad temperature range in (Bi0.5Na0.5)TiO3-based eco-friendly relaxor ferroelectric ceramics via multiple engineering processes. Journal of Alloys and Compounds, 2022, 896, 163139.	5.5	33
5	Energy storage performance of 0.55Bi0.5Na0.5TiO3-0.45SrTiO3 ceramics doped with lanthanide elements (Ln = La, Nd, Dy, Sm) using a viscous polymer processing route. Ceramics International, 2022, 48, 10885-10894.	4.8	24
6	Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering. Journal of Materiomics, 2022, 8, 527-536.	5.7	47
7	Enhancement of energy storage performance in lead-free barium titanate-based relaxor ferroelectrics through a synergistic two-step strategy design. Chemical Engineering Journal, 2022, 434, 134678.	12.7	57
8	Enhanced dielectric energy storage performance of A-site Ca2+-doped Na0.5Bi0.5TiO3–BaTiO3–BiFeO3 Pb-free ceramics. Ceramics International, 2022, 48, 21061-21070.	4.8	7
9	Ultrahigh electric breakdown strength, excellent dielectric energy storage density, and improved electrocaloric effect in Pb-free (1-x)Ba(Zr0.15Ti0.85)O3-xNaNbO3 ceramics. Ceramics International, 2022, 48, 10789-10802.	4.8	10
10	Relaxor antiferroelectric-like characteristic boosting enhanced energy storage performance in eco-friendly (Bi0.5Na0.5)TiO3-based ceramics. Journal of the European Ceramic Society, 2022, 42, 4528-4538.	5.7	28
11	Improved dielectric energy storage performance of Na0.5Bi0.5TiO3–Sr0.7Nd0.2TiO3 lead-free ceramics by adding an appropriate amount of AgNbO3. Ceramics International, 2022, 48, 31223-31232.	4.8	8
12	Structure, dielectric and relaxor properties of Sr0.7Bi0.2TiO3K0.5Bi0.5TiO3 lead-free ceramics for energy storage applications. Journal of Materiomics, 2021, 7, 195-207.	5.7	62
13	Dielectric, ferroelectric, and energy storage properties of Ba(Zn1/3Nb2/3)O3-modfied BiFeO3–BaTiO3 Pb-Free relaxor ferroelectric ceramics. Ceramics International, 2021, 47, 3780-3788.	4.8	40
14	Improved electric energy storage properties of BT-SBT lead-free ceramics incorporating with A-site substitution with Na & Bi ions and liquid sintering generated by Na0.5Bi0.5TiO3. Journal of Alloys and Compounds, 2021, 856, 156708.	5.5	22
15	Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process. Chemical Engineering Journal, 2021, 412, 127555.	12.7	111
16	Polyporous PVDF/TiO ₂ photocatalytic composites for photocatalyst fixation, recycle, and repair. Journal of the American Ceramic Society, 2021, 104, 6290-6298.	3.8	8
17	Dielectric and electrical energy storage properties of BiFeO3–BaTiO3–SrTiO3 ternary bulk ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 21188-21196.	2.2	20
18	Significantly improved energy storage performance of NBT-BT based ceramics through domain control and preparation optimization. Chemical Engineering Journal, 2021, 420, 129900.	12.7	100

#	Article	IF	CITATIONS
19	Energy storage performance of BaTiO3-based relaxor ferroelectric ceramics prepared through a two-step process. Chemical Engineering Journal, 2021, 419, 129673.	12.7	140
20	Energy storage performance of Na0.5Bi0.5TiO3 based lead-free ferroelectric ceramics prepared via non-uniform phase structure modification and rolling process. Chemical Engineering Journal, 2021, 420, 130475.	12.7	102
21	Tuning of electric and magnetic properties of BiFeO3-SrTiO3 solid solution ceramics by site-specific doping of Mn. Journal of Alloys and Compounds, 2021, 877, 160239.	5.5	15
22	Temperature-stable Na0.5Bi0.5TiO3-based relaxor ceramics with high permittivity and large energy density under low electric fields. Journal of Alloys and Compounds, 2021, 882, 160755.	5.5	15
23	The polarization contribution and effect mechanism of Ce-doped 0.65BaTiO3-0.35Sr0.7Bi0.2TiO3 Pb-free ferroelectric ceramics for dielectric energy storage. Ceramics International, 2021, 47, 32015-32024.	4.8	19
24	Study of the structure, electrical properties, and energy storage performance of ZnO-modified Ba0.65Sr0.245Bi0.07TiO3 Pb-free ceramics. Ceramics International, 2020, 46, 8-16.	4.8	33
25	Domainâ€scale imaging to dispel the clouds over the thermal depolarization of Bi _{0.5} Na _{0.5} TiO ₃ â€based relaxor ferroelectrics. Journal of the American Ceramic Society, 2020, 103, 1881-1890.	3.8	24
26	Secondâ€orderâ€transition like characteristic contributes to strain temperature stability in (K, Na)NbO 3 â€based materials. Journal of the American Ceramic Society, 2020, 103, 2509-2519.	3.8	3
27	Structure, dielectric properties of novel Ba(Zr,Ti)O3 based ceramics for energy storage application. Ceramics International, 2020, 46, 12080-12087.	4.8	24
28	Energy storage performance in Dy doped Na0.425Bi0.425Ca0.15TiO3 Pb-free ceramics. Ceramics International, 2020, 46, 28432-28442.	4.8	13
29	High thermally stable dielectric permittivity, polarization enhancement and electrostrictive properties in Zr-substituted bismuth sodium titanate lead-free ferroelectric ceramics. Ceramics International, 2020, 46, 22889-22899.	4.8	16
30	Enhanced electrical properties and energy storage performances of NBT-ST Pb-free ceramics through glass modification. Journal of Alloys and Compounds, 2020, 836, 154961.	5.5	44
31	Relaxor/antiferroelectric composites: a solution to achieve high energy storage performance in lead-free dielectric ceramics. Journal of Materials Chemistry C, 2020, 8, 5681-5691.	5.5	75
32	Phase evolution in (1â^'x)(Na0.5Bi0.5)TiO3-xSrTiO3 solid solutions: A study focusing on dielectric and ferroelectric characteristics. Journal of Materiomics, 2020, 6, 677-691.	5.7	110
33	Enhanced dielectric and ferroelectric properties in lead magnesium niobate-lead titanate ferroelectrics solid solutions by controlling the sintering protocols. Ceramics International, 2020, 46, 25608-25618.	4.8	3
34	Study of the ablation of a carbon/carbon composite at â^¼25 MW/m2 with a nitrogen plasma torch. Journal of the European Ceramic Society, 2020, 40, 5085-5093.	5.7	10
35	Structure evolution, ferroelectric properties, and energy storage performance of CaSnO3 modified BaTiO3-based Pb-free ceramics. Journal of Alloys and Compounds, 2020, 826, 154160.	5.5	57
36	Enhanced energy storage and discharge-charge performance by changing glass phase content in potassium sodium niobate glass-ceramics. Ceramics International, 2020, 46, 11492-11498.	4.8	16

#	Article	IF	CITATIONS
37	Investigation of electrical and electric energy storage properties of La -doped Na0.3 Sr0.4Bi0.3TiO3 based Pb-free ceramics. Ceramics International, 2020, 46, 19375-19384.	4.8	36
38	Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chemical Engineering Journal, 2020, 398, 125625.	12.7	181
39	Enhanced electrical properties related to structural distortion of CaBi ₂ Nb ₂ O ₉ â€based piezoelectric ceramics. Journal of the American Ceramic Society, 2019, 102, 1287-1295.	3.8	27
40	Microstructure evolution, mechanism of electric breakdown strength, and dielectric energy storage performance of CuO modified Ba0.65Sr0.245Bi0.07TiO3 Pb-free bulk ceramics. Ceramics International, 2019, 45, 21544-21556.	4.8	34
41	Effect of Dy2O3 content on the dielectric, ferroelectric, and energy storage properties of lead-free 0.5Na0.5Bi0.5TiO3–0.5SrTiO3 bulk ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 13556-13566.	2.2	26
42	An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability. Ceramics International, 2019, 45, 19189-19196.	4.8	149
43	Temperature-induced double P-E loops and improved energy storage performances of BaTiO3-based ceramics sintered at lower temperature. Journal of Electroceramics, 2019, 43, 96-105.	2.0	4
44	Superior and anti-fatigue electro-strain in Bi _{0.5} Na _{0.5} TiO ₃ -based polycrystalline relaxor ferroelectrics. Journal of Materials Chemistry A, 2019, 7, 5391-5401.	10.3	52
45	Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics. Journal of the European Ceramic Society, 2019, 39, 3057-3063.	5.7	108
46	The ferroelectric, dielectric and energy storage properties of Pb-free 0.6Na _{0.5} Bi _{0.5} TiO ₃ -0.4SrTiO ₃ bulk ceramics modified by Fe ₂ O ₃ . Materials Research Express, 2019, 6, 086329.	1.6	11
47	Dielectric, ferroelectric and energy storage properties of lead-free (1-x)Ba0.9Sr0.1TiO3-xBi(Zn0.5Zr0.5)O3 ferroelectric ceramics sintered at lower temperature. Ceramics International, 2019, 45, 15556-15565.	4.8	39
48	Perovskite Na _{0.5} Bi _{0.5} TiO ₃ : a potential family of peculiar lead-free electrostrictors. Journal of Materials Chemistry A, 2019, 7, 13658-13670.	10.3	50
49	Enhanced energy storage properties of lead-free (Ca0.5Sr0.5)1-1.5La TiO3 linear dielectric ceramics within a wide temperature range. Ceramics International, 2019, 45, 14684-14690.	4.8	47
50	Ultra-slim pinched polarization-electric field hysteresis loops and thermally stable electrostrains in lead-free sodium bismuth titanate-based solid solutions. Journal of Alloys and Compounds, 2019, 788, 1182-1192.	5.5	37
51	High thermal stability of electric field-induced strain in (1â°'x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 lead-free ferroelectrics. Journal of the European Ceramic Society, 2019, 39, 277-286.	5.7	56
52	High electric field-induced strain with ultra-low hysteresis and giant electrostrictive coefficient in barium strontium titanate lead-free ferroelectrics. Journal of the European Ceramic Society, 2019, 39, 295-304.	5.7	80
53	A realization of excellent piezoelectricity and good thermal stability in CaBi ₂ Nb ₂ O ₉ : Pseudo phase boundary. Journal of the American Ceramic Society, 2019, 102, 1794-1804.	3.8	41
54	Ultra-low hysteresis electric field-induced strain with high electrostrictive coefficient in lead-free Ba(Zr Ti1-)O3 ferroelectrics. Journal of Alloys and Compounds, 2019, 784, 931-938.	5.5	26

#	Article	IF	CITATIONS
55	High electrostrictive effect in La3+-doped Ba(Zr0.2Ti0.8)O3 lead-free ferroelectrics. Journal of Alloys and Compounds, 2019, 776, 599-605.	5.5	35
56	Structure and phase stability of lead-free antiferroelectric (Na0.96â^'xCa0.04Lix)(Nb0.96Zr0.04)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 2647-2651.	2.2	1
57	High dielectric permittivity and electrostrictive strain in a wide temperature range in relaxor ferroelectric (1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa(Zn1/3Nb2/3)O3 solid solutions. Ceramics International, 2019, 45, 5518-5524.	4.8	24
58	Effects of sintering temperature and KBT content on microstructure and electrical properties of (Bi.5Na.5)TiO3-BaTiO3-(Bi.5K.5)TiO3 Pb-free ceramics. Ceramics International, 2018, 44, 9303-9311.	4.8	17
59	Phase segregation and dielectric, ferroelectric, and piezoelectric properties of MgO-doped NBT-BT lead-free ferroelecric ceramics. Materials Research Express, 2018, 5, 036305.	1.6	3
60	Room-temperature electrocaloric effect in (1Ⱂx)Ba0.67Sr0.33TiO3–xBa0.9Ca0.1Ti0.9Zr0.1O3 ceramics under moderate electric field. Journal of Materials Science: Materials in Electronics, 2018, 29, 7227-7232.	2.2	6
61	Ultra-low hysteresis electrostrictive strain with high thermal stability in Bi(Li0.5Nb0.5)O3-modified BaTiO3 lead-free ferroelectrics. Journal of Alloys and Compounds, 2018, 753, 558-565.	5.5	29
62	High energy storage density of temperature-stable X9R ceramics. Materials Research Bulletin, 2018, 105, 114-120.	5.2	19
63	Enhanced thermal stability of (NaCe)â€multidoped CaBi ₂ Nb ₂ O ₉ by Aâ€site vacanciesâ€induced pseudoâ€ŧetragonal distortion. Journal of the American Ceramic Society, 2018, 101, 4615-4626.	3.8	41
64	Lead-free K0.5Na0.5NbO3–Bi0.5Li0.5ZrO3–BiAlO3 ternary ceramics: Structure and piezoelectric properties. Journal of Electroceramics, 2018, 40, 36-41.	2.0	8
65	Composition dependence of phase structure and piezoelectric properties in (0.98 â^' x)(K0.4Na0.6)NbO3–0.02CaZrO3–xBi0.5Na0.5HfO3 ternary ceramics. Journal of Materials Materials in Electronics, 2018, 29, 2072-2079.	Sziznce:	9
66	Enhanced ferroelectricity of CaBi2Nb2O9-based high-temperature piezoceramics by pseudo-tetragonal distortion. Ceramics International, 2018, 44, 5880-5885.	4.8	32
67	Netshape centrifugal gel-casting of high-temperature sialon ceramics. Ceramics International, 2018, 44, 3440-3447.	4.8	6
68	Improved dielectric energy storage performance of Pb-free 0.5Na0.5Bi0.5TiO3-0.5SrTiO3 ceramics modified with CaO. Journal of Advanced Dielectrics, 2018, 08, 1850042.	2.4	5
69	The doping effects of ZnNb ₂ O ₆ on the phase, microstructure and energy storage properties of (Sr _{0.98} Ca _{0.02})TiO ₃ paraelectric ceramics. Ferroelectrics, 2018, 531, 122-130.	0.6	3
70	Excellent electrostrictive coefficient in bismuth sodium titanate-based ceramics via regulating degree of diffuseness and phase composition. Journal of Applied Physics, 2018, 124, .	2.5	14
71	Injectable and Natural Humic Acid/Agarose Hybrid Hydrogel for Localized Light-Driven Photothermal Ablation and Chemotherapy of Cancer. ACS Biomaterials Science and Engineering, 2018, 4, 4266-4277.	5.2	41
72	Enhanced energy storage properties in MgO-doped BaTiO3 lead-free ferroelectric ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 18859-18867.	2.2	24

#	Article	IF	CITATIONS
73	Structural evolution and dielectric response of (1-x)BiFeO3-xSrTiO3 ceramics. Ceramics International, 2018, 44, S69-S71.	4.8	17
74	A strategy for obtaining high electrostrictive properties and its application in barium stannate titanate lead-free ferroelectrics. Ceramics International, 2018, 44, 21816-21824.	4.8	45
75	Antiferroelectric-like properties in MgO-modified 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 ceramics for high power energy storage. Journal of the European Ceramic Society, 2018, 38, 5388-5395.	5.7	72
76	Electrical properties and thermal stability of Ce-modified Ca0.80(Li0.5Bi0.5)0.20Bi2Nb2O9 ceramics. Journal of Alloys and Compounds, 2017, 697, 380-387.	5.5	37
77	Effects of Bi _{0.5} Na _{0.5} HfO ₃ addition on the phase structure and piezoelectric properties of (K, Na)NbO ₃ â€based ceramics. Journal of the American Ceramic Society, 2017, 100, 3920-3927.	3.8	8
78	The investigation of electrical properties and microstructure of ZnO-doped Ba0.9Sr0.1TiO ₃ ceramics. Journal of Advanced Dielectrics, 2017, 07, 1750007.	2.4	6
79	The dielectric and ferroelectric properties of (Ba0.5Sr0.5)TiO ₃ -doped (Bi0.5Na0.5)TiO ₃ lead-free ceramics. Journal of Advanced Dielectrics, 2017, 07, 1750028.	2.4	9
80	An Investigation of Dielectric, Piezoelectric Properties and Microstructures of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 Lead-Free Piezoelectric Ceramics Doped with K2AlNbO5 Compound. Journal of Electronic Materials, 2017, 46, 5287-5295.	2.2	12
81	Microstructure, dielectric, ferroelectric and energy storage properties of SnO ₂ doped Ba _{0.5} Sr _{0.5} TiO ₃ ceramics. Ferroelectrics, 2017, 520, 171-176.	0.6	10
82	The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nature Communications, 2016, 7, 13807.	12.8	510
83	Effects of microwave sintering processing parameters on properties of BaTiO ₃ ceramics. Ferroelectrics, 2016, 504, 237-241.	0.6	2
84	Diffuse Phase Transitions and Giant Electrostrictive Coefficients in Lead-Free Fe ³⁺ -Doped 0.5Ba(Zr _{0.2} Ti _{0.8})O ₃ -0.5(Ba _{0.7} Ca _{0.3})TiO _{ Ferroelectric Ceramics. ACS Applied Materials & Interfaces, 2016, 8, 31109-31119.}	>3 ≋/9 ub>	192
85	Electrical properties and microstructures of (Zn and Nb) co-doped BaTiO 3 ceramics prepared by microwave sintering. Ceramics International, 2016, 42, 7877-7882.	4.8	17
86	Improved electrical properties of SiO 2 -added BaTiO 3 ceramics by microwave sintering. Materials Letters, 2016, 165, 135-138.	2.6	20
87	Influence of Water Vapor on Silica Membrane: Adsorption Properties and Percolation Effect. Chinese Journal of Chemical Physics, 2015, 28, 345-350.	1.3	1
88	Electrical and Mechanical Properties of Alumina Mixed BaTiO ₃ Ceramics Incorporating Nano-sized Powders. Ferroelectrics, 2015, 478, 132-139.	0.6	4
89	Gel casting of sialon ceramics based on water soluble epoxy resin. Ceramics International, 2015, 41, 11534-11538.	4.8	12
90	The dielectric properties and microstructure of BaTiO3 ceramics with ZnO–Nb2O5 composite addition. Journal of Alloys and Compounds, 2015, 646, 748-752.	5.5	16

#	Article	IF	CITATIONS
91	Rheological characterization and shape control in gel-casting of nano-sized zirconia powders. Ceramics International, 2014, 40, 14405-14412.	4.8	18
92	Lamellar BaTiO3 and its composites fabricated by the freeze casting technique. Journal of the European Ceramic Society, 2014, 34, 4083-4088.	5.7	22
93	Porous Al2O3–ZrO2 composites fabricated by an ice template method. Scripta Materialia, 2010, 62, 466-468.	5.2	70
94	Preparation of concentrated barium titanate suspensions incorporating nano-sized powders. Journal of the European Ceramic Society, 2010, 30, 171-176.	5.7	15