
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9428403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Materials, 2006, 5, 328-333.	27.5	2,001
2	Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight. Macromolecules, 2005, 38, 3312-3319.	4.8	1,003
3	Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight. Advanced Materials, 2003, 15, 1519-1522.	21.0	899
4	Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nature Materials, 2006, 5, 222-228.	27.5	737
5	Microstructural Characterization and Charge Transport in Thin Films of Conjugated Polymers. Advanced Materials, 2010, 22, 3812-3838.	21.0	464
6	Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer. Nature Communications, 2013, 4, 2238.	12.8	456
7	Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nature Materials, 2008, 7, 216-221.	27.5	455
8	Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thinâ€Film Organic Transistors. Advanced Materials, 2009, 21, 1091-1109.	21.0	412
9	Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes. Applied Physics Letters, 2005, 86, 122110.	3.3	411
10	Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains. Journal of the American Chemical Society, 2011, 133, 15073-15084.	13.7	381
11	X-ray Scattering Study of Thin Films of Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). Journal of the American Chemical Society, 2007, 129, 3226-3237.	13.7	351
12	Critical Role of Side-Chain Attachment Density on the Order and Device Performance of Polythiophenes. Macromolecules, 2007, 40, 7960-7965.	4.8	321
13	Anisotropic Structure and Charge Transport in Highly Strainâ€Aligned Regioregular Poly(3â€hexylthiophene). Advanced Functional Materials, 2011, 21, 3697-3705.	14.9	288
14	High Carrier Mobility Polythiophene Thin Films: Structure Determination by Experiment and Theory. Advanced Materials, 2007, 19, 833-837.	21.0	276
15	Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Physical Review B, 2011, 84, .	3.2	262
16	Molecular Order in High-Efficiency Polymer/Fullerene Bulk Heterojunction Solar Cells. ACS Nano, 2011, 5, 8248-8257.	14.6	260
17	Molecular Characterization of Organic Electronic Films. Advanced Materials, 2011, 23, 319-337.	21.0	215
18	Correlations between Mechanical and Electrical Properties of Polythiophenes. ACS Nano, 2010, 4, 7538-7544.	14.6	210

#	Article	IF	CITATIONS
19	Morphology and Charge Transport in Conjugated Polymers. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 27-45.	2.2	192
20	Synthesis, Characterization, and Field-Effect Transistor Performance of Carboxylate-Functionalized Polythiophenes with Increased Air Stability. Chemistry of Materials, 2005, 17, 4892-4899.	6.7	185
21	Interfacial Segregation in Polymer/Fullerene Blend Films for Photovoltaic Devices. Macromolecules, 2010, 43, 3828-3836.	4.8	182
22	Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Physical Review B, 2011, 83, .	3.2	180
23	Organic Single-Crystal Field-Effect Transistors of a Soluble Anthradithiophene. Chemistry of Materials, 2008, 20, 6733-6737.	6.7	178
24	Controlling the Orientation of Terraced Nanoscale "Ribbons―of a Poly(thiophene) Semiconductor. ACS Nano, 2009, 3, 780-787.	14.6	160
25	Nanoscale structure measurements for polymer-fullerene photovoltaics. Energy and Environmental Science, 2012, 5, 5980.	30.8	145
26	Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. Applied Physics Letters, 2007, 90, 062117.	3.3	136
27	Confinement-Driven Increase in Ionomer Thin-Film Modulus. Nano Letters, 2014, 14, 2299-2304.	9.1	132
28	The Influence of Polymer Purification on Photovoltaic Device Performance of a Series of Indacenodithiophene Donor Polymers. Advanced Materials, 2013, 25, 2029-2034.	21.0	129
29	Use of Xâ€Ray Diffraction, Molecular Simulations, and Spectroscopy to Determine the Molecular Packing in a Polymerâ€Fullerene Bimolecular Crystal. Advanced Materials, 2012, 24, 6071-6079.	21.0	126
30	In Situ Characterization of Polymer–Fullerene Bilayer Stability. Macromolecules, 2015, 48, 383-392.	4.8	126
31	The Effect of Interfacial Roughness on the Thin Film Morphology and Charge Transport of Highâ€Performance Polythiophenes. Advanced Functional Materials, 2008, 18, 742-750.	14.9	120
32	Molecular Basis of Mesophase Ordering in a Thiophene-Based Copolymer. Macromolecules, 2008, 41, 5709-5715.	4.8	114
33	Three-Dimensional Packing Structure and Electronic Properties of Biaxially Oriented Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2- <i>b</i>]thiophene) Films. Journal of the American Chemical Society, 2012, 134, 6177-6190.	13.7	108
34	Vertically Segregated Structure and Properties of Small Molecule–Polymer Blend Semiconductors for Organic Thinâ€Film Transistors. Advanced Functional Materials, 2013, 23, 366-376.	14.9	106
35	Poly(3-hexylthiophene) and [6,6]-Phenyl-C ₆₁ -butyric Acid Methyl Ester Mixing in Organic Solar Cells. Macromolecules, 2012, 45, 6587-6599.	4.8	103
36	Influence of Side-Chain Regiochemistry on the Transistor Performance of High-Mobility, All-Donor Polymers. Journal of the American Chemical Society, 2014, 136, 15154-15157.	13.7	97

R JOSEPH KLINE

#	Article	IF	CITATIONS
37	Effect of Processing Additives on the Solidification of Bladeâ€Coated Polymer/Fullerene Blend Films via Inâ€Situ Structure Measurements. Advanced Energy Materials, 2013, 3, 938-948.	19.5	96
38	Charge Transport in Highly Face-On Poly(3-hexylthiophene) Films. Journal of Physical Chemistry C, 2013, 117, 17421-17428.	3.1	95
39	<i>Xi-cam</i> : a versatile interface for data visualization and analysis. Journal of Synchrotron Radiation, 2018, 25, 1261-1270.	2.4	89
40	Scanning electron microscope measurement of width and shape of 10 nm patterned lines using a JMONSEL-modeled library. Ultramicroscopy, 2015, 154, 15-28.	1.9	83
41	Morphological Origin of Charge Transport Anisotropy in Aligned Polythiophene Thin Films. Advanced Functional Materials, 2014, 24, 3422-3431.	14.9	77
42	Significantly Increasing the Ductility of High Performance Polymer Semiconductors through Polymer Blending. ACS Applied Materials & Interfaces, 2016, 8, 14037-14045.	8.0	68
43	Controlling the Microstructure of Solution-Processable Small Molecules in Thin-Film Transistors through Substrate Chemistry. Chemistry of Materials, 2011, 23, 1194-1203.	6.7	67
44	Tailored interfaces for self-patterning organic thin-film transistors. Journal of Materials Chemistry, 2012, 22, 19047.	6.7	66
45	Tuning Open-Circuit Voltage in Organic Solar Cells with Molecular Orientation. ACS Applied Materials & Interfaces, 2015, 7, 13208-13216.	8.0	64
46	Zone-Refinement Effect in Small Moleculeâ^'Polymer Blend Semiconductors for Organic Thin-Film Transistors. Journal of the American Chemical Society, 2011, 133, 412-415.	13.7	59
47	Determination of the Internal Morphology of Nanostructures Patterned by Directed Self Assembly. ACS Nano, 2014, 8, 8426-8437.	14.6	58
48	NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering. Journal of Applied Crystallography, 2017, 50, 462-474.	4.5	57
49	Germaindacenodithiophene based low band gap polymers for organic solar cells. Chemical Communications, 2012, 48, 2955.	4.1	53
50	Determining the shape and periodicity of nanostructures using small-angle X-ray scattering. Journal of Applied Crystallography, 2015, 48, 1355-1363.	4.5	53
51	Influence of source-drain electric field on mobility and charge transport in organic field-effect transistors. Journal of Applied Physics, 2007, 102, .	2.5	47
52	Measuring Domain Sizes and Compositional Heterogeneities in P3HTâ€PCBM Bulk Heterojunction Thin Films with ¹ H Spin Diffusion NMR Spectroscopy. Advanced Functional Materials, 2012, 22, 1255-1266.	14.9	47
53	Measuring the Extent of Phase Separation in Poly-3-Hexylthiophene/Phenyl-C ₆₁ -Butyric Acid Methyl Ester Photovoltaic Blends with ¹ H Spin Diffusion NMR Spectroscopy. Chemistry of Materials, 2010, 22, 2930-2936.	6.7	46
54	Thin Film Microstructure of a Solution Processable Pyrene-Based Organic Semiconductor. Chemistry of Materials, 2008, 20, 5743-5749.	6.7	44

#	Article	IF	CITATIONS
55	Influence of substrate on crystallization in polythiophene/fullerene blends. Solar Energy Materials and Solar Cells, 2011, 95, 1375-1381.	6.2	42
56	Influence of Dielectric Surface Chemistry on the Microstructure and Carrier Mobility of an nâ€Type Organic Semiconductor. Advanced Functional Materials, 2009, 19, 2365-2372.	14.9	41
57	Electroluminescence imaging and microstructure of organic light-emitting field-effect transistors. Applied Physics Letters, 2008, 92, .	3.3	40
58	Plastic Deformation of Polymer Blends as a Means to Achieve Stretchable Organic Transistors. Advanced Electronic Materials, 2017, 3, 1600388.	5.1	39
59	Oriented Liquid Crystalline Polymer Semiconductor Films with Large Ordered Domains. ACS Applied Materials & Interfaces, 2015, 7, 26726-26734.	8.0	38
60	Near Infrared Absorbing Soluble Poly(cyclopenta[2,1-b:3,4-b′]dithiophen-4-one)vinylene Polymers Exhibiting High Hole and Electron Mobilities in Ambient Air. Chemistry of Materials, 2013, 25, 59-68.	6.7	35
61	Reducing Block Copolymer Interfacial Widths through Polymer Additives. Macromolecules, 2015, 48, 679-686.	4.8	34
62	Anisotropic Elastic Modulus of Oriented Regioregular Poly(3-hexylthiophene) Films. Macromolecules, 2016, 49, 327-333.	4.8	34
63	Characterizing the Interface Scaling of High χ Block Copolymers near the Order–Disorder Transition. Macromolecules, 2018, 51, 173-180.	4.8	34
64	Three-dimensional x-ray metrology for block copolymer lithography line-space patterns. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2013, 12, 031103.	0.9	33
65	Benzotrithiophene Copolymers: Influence of Molecular Packing and Energy Levels on Charge Carrier Mobility. Macromolecules, 2014, 47, 2883-2890.	4.8	26
66	Template–polymer commensurability and directed selfâ€assembly block copolymer lithography. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 595-603.	2.1	26
67	Derivation of Multiple Covarying Material and Process Parameters Using Physics-Based Modeling of X-ray Data. Macromolecules, 2017, 50, 7783-7793.	4.8	26
68	Panchromatic Allâ€Polymer Photodetector with Tunable Polarization Sensitivity. Advanced Optical Materials, 2019, 7, 1801346.	7.3	26
69	Effect of Fullerenes on Crystallization-Induced Aggregation in Polymer Photovoltaics Casting Solutions. Macromolecules, 2012, 45, 1046-1055.	4.8	25
70	Advancing x-ray scattering metrology using inverse genetic algorithms. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2016, 15, 034001.	0.9	24
71	Directed Self-Assembly of Lamellar Copolymers: Effects of Interfacial Interactions on Domain Shape. ACS Macro Letters, 2012, 1, 1244-1248.	4.8	23
72	Classification of semiconducting polymeric mesophases to optimize device postprocessing. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1641-1653.	2.1	23

#	Article	IF	CITATIONS
73	Improved Efficiency in Poly(3-hexylthiophene)/Zinc Oxide Solar Cells via Lithium Incorporation. Journal of Physical Chemistry C, 2009, 113, 17608-17612.	3.1	21
74	Impact of Substrate Characteristics on Stretchable Polymer Semiconductor Behavior. ACS Applied Materials & Interfaces, 2019, 11, 3280-3289.	8.0	20
75	Soft crystal martensites: An in situ resonant soft x-ray scattering study of a liquid crystal martensitic transformation. Science Advances, 2020, 6, eaay5986.	10.3	20
76	Interface Engineering To Control Magnetic Field Effects of Organic-Based Devices by Using a Molecular Self-Assembled Monolayer. ACS Nano, 2014, 8, 7192-7201.	14.6	19
77	Confinement and Processing Can Alter the Morphology and Periodicity of Bottlebrush Block Copolymers in Thin Films. ACS Nano, 2020, 14, 17476-17486.	14.6	19
78	Conjugation Effects on Carrier Mobilities of Polythiophenes Probed by Time-Resolved Terahertz Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 10587-10590.	3.1	18
79	Post-directed-self-assembly membrane fabrication for <i>in situ</i> analysis of block copolymer structures. Nanotechnology, 2016, 27, 435303.	2.6	18
80	Influence of Additives on the Interfacial Width and Line Edge Roughness in Block Copolymer Lithography. Chemistry of Materials, 2020, 32, 2399-2407.	6.7	17
81	Evaluation of the effect of data quality on the profile uncertainty of critical dimension small angle x-ray scattering. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2016, 15, 014001.	0.9	16
82	Dependence of electrical performance on structural organization in polymer field effect transistors. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1063-1074.	2.1	15
83	Critical dimension small angle X-ray scattering measurements of FinFET and 3D memory structures. Proceedings of SPIE, 2013, , .	0.8	13
84	Optimizing self-consistent field theory block copolymer models with X-ray metrology. Molecular Systems Design and Engineering, 2018, 3, 376-389.	3.4	13
85	Intercomparison between optical and x-ray scatterometry measurements of FinFET structures. , 2013, , .		12
86	Inâ€Plane Alignment in Organic Solar Cells to Probe the Morphological Dependence of Charge Recombination. Advanced Functional Materials, 2015, 25, 1296-1303.	14.9	12
87	Quantifying the Interface Energy of Block Copolymer Top Coats. ACS Macro Letters, 2016, 5, 1306-1311.	4.8	12
88	Traceable GISAXS measurements for pitch determination of a 25â€nm self-assembled polymer grating. Journal of Applied Crystallography, 2014, 47, 1912-1920.	4.5	11
89	Local Orientational Structure of a P3HT π–π Conjugated Network Investigated by X-ray Nanodiffraction. Journal of Physical Chemistry Letters, 2014, 5, 2335-2339.	4.6	11
90	Characterizing Patterned Block Copolymer Thin Films with Soft X-rays. ACS Applied Materials & Interfaces, 2017, 9, 31325-31334.	8.0	10

#	Article	IF	CITATIONS
91	Molecular Orientation Depth Profiles in Organic Glasses Using Polarized Resonant Soft X-ray Reflectivity. Chemistry of Materials, 2020, 32, 6295-6309.	6.7	10
92	The influence of molecular weight on the microstructure and thin film transistor characteristics of pBTTT polymers , 2006, , .		9
93	X-ray scattering critical dimensional metrology using a compact x-ray source for next generation semiconductor devices. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2017, 16, 014001.	0.9	9
94	Thermodynamic and Morphological Behavior of Block Copolymer Blends with Thermal Polymer Additives. Macromolecules, 2016, 49, 4898-4908.	4.8	7
95	Spatial Control of the Self-assembled Block Copolymer Domain Orientation and Alignment on Photopatterned Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 23399-23409.	8.0	7
96	Advancing the computational methodology of rigid rod and semiflexible polymer systems: A new solution to the wormlike chain model with rod oil copolymer calculations. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 29-39.	2.1	6
97	Extracting dimensional parameters of gratings produced with self-aligned multiple patterning using grazing-incidence small-angle x-ray scattering. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2020, 19, 1.	0.9	6
98	Characterization of the Non-uniform Reaction in Chemically Amplified Calix[4]resorcinarene Molecular Resist Thin Films. Australian Journal of Chemistry, 2011, 64, 1065.	0.9	4
99	Multiscale 3D X-ray imaging. Nature Electronics, 2019, 2, 435-436.	26.0	4
100	Distinguishing between nonlinear channel transport and contact effects in organic FETs. Proceedings of SPIE, 2007, , .	0.8	3
101	X-ray characterization of contact holes for block copolymer lithography. Journal of Applied Crystallography, 2019, 52, 106-114.	4.5	3
102	Methodology for evaluating the information distribution in small angle scattering from periodic nanostructures. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2018, 17, 1.	0.9	3
103	Modeling the polarized X-ray scattering from periodic nanostructures with molecular anisotropy. Journal of Applied Crystallography, 2017, 50, 1677-1690.	4.5	2
104	Buried Structure in Block Copolymer Films Revealed by Soft X-ray Reflectivity. ACS Nano, 2021, 15, 9577-9587.	14.6	2
105	Compact X-ray Sources for Metrology Applications in the Semiconductor Industry. , 2016, , .		1
106	The Influence of Additives on the Interfacial Width and Line Edge Roughness in Block Copolymer Lithography. Chemistry of Materials, 2020, 32, .	6.7	1
107	Evaluating structure in thin block copolymer films with soft x-rays (Conference Presentation). , 2017, , .		0
108	X-ray Metrology for the SemiconductorIndustry Tutorial. Journal of Research of the National Institute of Standards and Technology, 2019, 124, 1-3.	1.2	0

#	Article	IF	CITATIONS
109	X-ray characterization of contact holes for block copolymer lithography. Journal of Applied Crystallography, 2019, 52, .	4.5	Ο
110	Methodology for evaluating the information distribution in small angle scattering from periodic nanostructures. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2018, 17, .	0.9	0