
Tracey M Gloster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9427599/publications.pdf Version: 2024-02-01

TRACEV M CLOSTER

#	Article	IF	CITATIONS
1	Structure, dynamics, and molecular inhibition of the Staphylococcus aureus m1A22-tRNA methyltransferase TrmK. Journal of Biological Chemistry, 2022, 298, 102040.	1.6	4
2	The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence. Nucleic Acids Research, 2021, 49, 2777-2789.	6.5	46
3	Sialidase and Sialyltransferase Inhibitors: Targeting Pathogenicity and Disease. Frontiers in Molecular Biosciences, 2021, 8, 705133.	1.6	19
4	Kinetic and Structural Characterization of Sialidases (Kdnases) from Ascomycete Fungal Pathogens. ACS Chemical Biology, 2021, 16, 2632-2640.	1.6	1
5	Dissecting the Mechanism of (<i>R</i>)-3-Hydroxybutyrate Dehydrogenase by Kinetic Isotope Effects, Protein Crystallography, and Computational Chemistry. ACS Catalysis, 2020, 10, 15019-15032.	5.5	8
6	Analysis of the product streams obtained on butanosolv pretreatment of draff. Biomass and Bioenergy, 2020, 141, 105680.	2.9	8
7	An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature, 2020, 577, 572-575.	13.7	139
8	Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate. Nature Communications, 2020, 11, 500.	5.8	97
9	Exploitation of carbohydrate processing enzymes in biocatalysis. Current Opinion in Chemical Biology, 2020, 55, 180-188.	2.8	11
10	Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. ELife, 2020, 9, .	2.8	22
11	Linear Eyring Plots Conceal a Change in the Rate-Limiting Step in an Enzyme Reaction. Biochemistry, 2018, 57, 6757-6761.	1.2	16
12	New Irreversible αâ€ <scp>l</scp> ″duronidase Inhibitors and Activityâ€Based Probes. Chemistry - A European Journal, 2018, 24, 19081-19088.	1.7	9
13	Metabolic Inhibitors of Oâ€GlcNAc Transferase That Act Inâ€Vivo Implicate Decreased Oâ€GlcNAc Levels in Leptinâ€Mediated Nutrient Sensing. Angewandte Chemie, 2018, 130, 7770-7774.	1.6	7
14	Metabolic Inhibitors of Oâ€GlcNAc Transferase That Act Inâ€Vivo Implicate Decreased Oâ€GlcNAc Levels in Leptinâ€Mediated Nutrient Sensing. Angewandte Chemie - International Edition, 2018, 57, 7644-7648.	7.2	56
15	Revealing the mechanism for covalent inhibition of glycoside hydrolases by carbasugars at an atomic level. Nature Communications, 2018, 9, 3243.	5.8	28
16	Structural Snapshots for Mechanismâ€Based Inactivation of a Glycoside Hydrolase by Cyclopropyl Carbasugars. Angewandte Chemie, 2016, 128, 15202-15206.	1.6	7
17	Structural Snapshots for Mechanismâ€Based Inactivation of a Glycoside Hydrolase by Cyclopropyl Carbasugars. Angewandte Chemie - International Edition, 2016, 55, 14978-14982.	7.2	30
18	Advances in understanding glycosyltransferases from a structural perspective. Current Opinion in Structural Biology, 2014, 28, 131-141.	2.6	127

TRACEY M GLOSTER

#	Article	IF	CITATIONS
19	Structural and mechanistic insight into N-glycan processing by endo-î±-mannosidase. Proceedings of the United States of America, 2012, 109, 781-786.	3.3	74
20	Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nature Chemical Biology, 2012, 8, 966-968.	3.9	132
21	Development of inhibitors as research tools for carbohydrate-processing enzymes. Biochemical Society Transactions, 2012, 40, 913-928.	1.6	15
22	Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Nature Chemical Biology, 2012, 8, 683-694.	3.9	159
23	Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nature Chemical Biology, 2011, 7, 174-181.	3.9	291
24	Mechanism, Structure, and Inhibition of O-GlcNAc Processing Enzymes. Current Signal Transduction Therapy, 2010, 5, 74-91.	0.3	54
25	Elevation of Global O-GlcNAc in Rodents UsingÂa Selective O-GlcNAcase Inhibitor Does Not Cause Insulin Resistance or Perturb Glucohomeostasis. Chemistry and Biology, 2010, 17, 949-958.	6.2	71
26	Inhibition of O-GlcNAcase Using a Potent and Cell-Permeable Inhibitor Does Not Induce Insulin Resistance in 3T3-L1 Adipocytes. Chemistry and Biology, 2010, 17, 937-948.	6.2	67
27	Glycosidase inhibition: assessing mimicry of the transition state. Organic and Biomolecular Chemistry, 2010, 8, 305-320.	1.5	217
28	Divergence of Catalytic Mechanism within a Glycosidase Family Provides Insight into Evolution of Carbohydrate Metabolism by Human Gut Flora. Chemistry and Biology, 2008, 15, 1058-1067.	6.2	81
29	Characterization and Three-dimensional Structures of Two Distinct Bacterial Xyloglucanases from Families GH5 and GH12. Journal of Biological Chemistry, 2007, 282, 19177-19189.	1.6	103
30	Structural basis for cyclophellitol inhibition of a β-glucosidase. Organic and Biomolecular Chemistry, 2007, 5, 444-446.	1.5	45
31	Glycosidase Inhibition:Â An Assessment of the Binding of 18 Putative Transition-State Mimics. Journal of the American Chemical Society, 2007, 129, 2345-2354.	6.6	124
32	Structural, Kinetic, and Thermodynamic Analysis of Glucoimidazole-Derived Glycosidase Inhibitorsâ€,‡. Biochemistry, 2006, 45, 11879-11884.	1.2	47
33	Dissection of Conformationally Restricted Inhibitors Binding to a Î ² -Glucosidase. ChemBioChem, 2006, 7, 738-742.	1.3	34
34	Recent structural insights into the expanding world of carbohydrate-active enzymes. Current Opinion in Structural Biology, 2005, 15, 637-645.	2.6	264
35	Structural, Thermodynamic, and Kinetic Analyses of Tetrahydrooxazine-derived Inhibitors Bound to β-Glucosidases. Journal of Biological Chemistry, 2004, 279, 49236-49242.	1.6	37
36	Atomic resolution analyses of the binding of xylobiose-derived deoxynojirimycin and isofagomine to xylanase Xyn10AElectronic supplementary information (ESI) available: kinetics and structural methods. See http://www.rsc.org/suppdata/cc/b4/b405152a/. Chemical Communications, 2004, , 1794.	2.2	26

#	Article	IF	CITATIONS
37	Structural Studies of the β-Glycosidase fromSulfolobus solfataricusin Complex with Covalently and Noncovalently Bound Inhibitorsâ€. Biochemistry, 2004, 43, 6101-6109.	1.2	62
38	Iminosugar Glycosidase Inhibitors:Â Structural and Thermodynamic Dissection of the Binding of Isofagomine and 1-Deoxynojirimycin to β-Glucosidases. Journal of the American Chemical Society, 2003, 125, 14313-14323.	6.6	154
39	A xylobiose-derived isofagomine lactam glycosidase inhibitor binds as its amide tautomerElectronic supplementary information (ESI) available: details of data and structure quality for complex of 1 with Xyn10A. See http://www.rsc.org/suppdata/cc/b3/b301829f/. Chemical Communications, 2003, , 944-945.	2.2	13