Tracey M Gloster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9427599/publications.pdf

Version: 2024-02-01

39 papers

2,714 citations

236925 25 h-index 289244 40 g-index

44 all docs 44 docs citations

44 times ranked 3216 citing authors

#	Article	IF	CITATIONS
1	Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nature Chemical Biology, 2011, 7, 174-181.	8.0	291
2	Recent structural insights into the expanding world of carbohydrate-active enzymes. Current Opinion in Structural Biology, 2005, 15, 637-645.	5.7	264
3	Glycosidase inhibition: assessing mimicry of the transition state. Organic and Biomolecular Chemistry, 2010, 8, 305-320.	2.8	217
4	Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Nature Chemical Biology, 2012, 8, 683-694.	8.0	159
5	Iminosugar Glycosidase Inhibitors: Structural and Thermodynamic Dissection of the Binding of Isofagomine and 1-Deoxynojirimycin to β-Glucosidases. Journal of the American Chemical Society, 2003, 125, 14313-14323.	13.7	154
6	An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature, 2020, 577, 572-575.	27.8	139
7	Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nature Chemical Biology, 2012, 8, 966-968.	8.0	132
8	Advances in understanding glycosyltransferases from a structural perspective. Current Opinion in Structural Biology, 2014, 28, 131-141.	5.7	127
9	Glycosidase Inhibition:Â An Assessment of the Binding of 18 Putative Transition-State Mimics. Journal of the American Chemical Society, 2007, 129, 2345-2354.	13.7	124
10	Characterization and Three-dimensional Structures of Two Distinct Bacterial Xyloglucanases from Families GH5 and GH12. Journal of Biological Chemistry, 2007, 282, 19177-19189.	3.4	103
11	Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate. Nature Communications, 2020, 11, 500.	12.8	97
12	Divergence of Catalytic Mechanism within a Glycosidase Family Provides Insight into Evolution of Carbohydrate Metabolism by Human Gut Flora. Chemistry and Biology, 2008, 15, 1058-1067.	6.0	81
13	Structural and mechanistic insight into N-glycan processing by endo-α-mannosidase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 781-786.	7.1	74
14	Elevation of Global O-GlcNAc in Rodents UsingÂa Selective O-GlcNAcase Inhibitor Does Not Cause Insulin Resistance or Perturb Glucohomeostasis. Chemistry and Biology, 2010, 17, 949-958.	6.0	71
15	Inhibition of O-GlcNAcase Using a Potent and Cell-Permeable Inhibitor Does Not Induce Insulin Resistance in 3T3-L1 Adipocytes. Chemistry and Biology, 2010, 17, 937-948.	6.0	67
16	Structural Studies of the β-Glycosidase fromSulfolobus solfataricusin Complex with Covalently and Noncovalently Bound Inhibitorsâ€. Biochemistry, 2004, 43, 6101-6109.	2.5	62
17	Metabolic Inhibitors of Oâ€GlcNAc Transferase That Act Inâ€Vivo Implicate Decreased Oâ€GlcNAc Levels in Leptinâ€Mediated Nutrient Sensing. Angewandte Chemie - International Edition, 2018, 57, 7644-7648.	13.8	56
18	Mechanism, Structure, and Inhibition of O-GlcNAc Processing Enzymes. Current Signal Transduction Therapy, 2010, 5, 74-91.	0.5	54

#	Article	IF	CITATIONS
19	Structural, Kinetic, and Thermodynamic Analysis of Glucoimidazole-Derived Glycosidase Inhibitorsâ€,‡. Biochemistry, 2006, 45, 11879-11884.	2.5	47
20	The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence. Nucleic Acids Research, 2021, 49, 2777-2789.	14.5	46
21	Structural basis for cyclophellitol inhibition of a \hat{l}^2 -glucosidase. Organic and Biomolecular Chemistry, 2007, 5, 444-446.	2.8	45
22	Structural, Thermodynamic, and Kinetic Analyses of Tetrahydrooxazine-derived Inhibitors Bound to β-Glucosidases. Journal of Biological Chemistry, 2004, 279, 49236-49242.	3.4	37
23	Dissection of Conformationally Restricted Inhibitors Binding to a \hat{l}^2 -Glucosidase. ChemBioChem, 2006, 7, 738-742.	2.6	34
24	Structural Snapshots for Mechanismâ€Based Inactivation of a Glycoside Hydrolase by Cyclopropyl Carbasugars. Angewandte Chemie - International Edition, 2016, 55, 14978-14982.	13.8	30
25	Revealing the mechanism for covalent inhibition of glycoside hydrolases by carbasugars at an atomic level. Nature Communications, 2018, 9, 3243.	12.8	28
26	Atomic resolution analyses of the binding of xylobiose-derived deoxynojirimycin and isofagomine to xylanase Xyn10AElectronic supplementary information (ESI) available: kinetics and structural methods. See http://www.rsc.org/suppdata/cc/b4/b405152a/. Chemical Communications, 2004, , 1794.	4.1	26
27	Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. ELife, 2020, 9, .	6.0	22
28	Sialidase and Sialyltransferase Inhibitors: Targeting Pathogenicity and Disease. Frontiers in Molecular Biosciences, 2021, 8, 705133.	3.5	19
29	Linear Eyring Plots Conceal a Change in the Rate-Limiting Step in an Enzyme Reaction. Biochemistry, 2018, 57, 6757-6761.	2.5	16
30	Development of inhibitors as research tools for carbohydrate-processing enzymes. Biochemical Society Transactions, 2012, 40, 913-928.	3.4	15
31	A xylobiose-derived isofagomine lactam glycosidase inhibitor binds as its amide tautomerElectronic supplementary information (ESI) available: details of data and structure quality for complex of 1 with Xyn10A. See http://www.rsc.org/suppdata/cc/b3/b301829f/. Chemical Communications, 2003, , 944-945.	4.1	13
32	Exploitation of carbohydrate processing enzymes in biocatalysis. Current Opinion in Chemical Biology, 2020, 55, 180-188.	6.1	11
33	New Irreversible αâ€xscp>lâ€lduronidase Inhibitors and Activityâ€Based Probes. Chemistry - A European Journal, 2018, 24, 19081-19088.	3.3	9
34	Dissecting the Mechanism of $(\langle i\rangle R\langle i\rangle)$ -3-Hydroxybutyrate Dehydrogenase by Kinetic Isotope Effects, Protein Crystallography, and Computational Chemistry. ACS Catalysis, 2020, 10, 15019-15032.	11.2	8
35	Analysis of the product streams obtained on butanosolv pretreatment of draff. Biomass and Bioenergy, 2020, 141, 105680.	5.7	8
36	Structural Snapshots for Mechanismâ€Based Inactivation of a Glycoside Hydrolase by Cyclopropyl Carbasugars. Angewandte Chemie, 2016, 128, 15202-15206.	2.0	7

TRACEY M GLOSTER

#	Article	IF	CITATIONS
37	Metabolic Inhibitors of Oâ€GlcNAc Transferase That Act Inâ€Vivo Implicate Decreased Oâ€GlcNAc Levels in Leptinâ€Mediated Nutrient Sensing. Angewandte Chemie, 2018, 130, 7770-7774.	2.0	7
38	Structure, dynamics, and molecular inhibition of the Staphylococcus aureus m1A22-tRNA methyltransferase TrmK. Journal of Biological Chemistry, 2022, 298, 102040.	3.4	4
39	Kinetic and Structural Characterization of Sialidases (Kdnases) from Ascomycete Fungal Pathogens. ACS Chemical Biology, 2021, 16, 2632-2640.	3.4	1