Takashi Inoue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9427369/publications.pdf

Version: 2024-02-01

471371 254106 2,104 65 17 43 citations h-index g-index papers 3199 68 68 68 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature, 2019, 565, 600-605.	13.7	741
2	Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature, 2021, 599, 458-464.	13.7	251
3	Quantitative Atlas of Blood–Brain Barrier Transporters, Receptors, and Tight Junction Proteins in Rats and Common Marmoset. Journal of Pharmaceutical Sciences, 2013, 102, 3343-3355.	1.6	198
4	Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing. Cell Stem Cell, 2016, 19, 127-138.	5.2	139
5	Birth of Healthy Offspring following ICSI in In Vitro-Matured Common Marmoset (Callithrix jacchus) Oocytes. PLoS ONE, 2014, 9, e95560.	1.1	43
6	Novel Marmoset Cytochrome P450 2C19 in Livers Efficiently Metabolizes Human P450 2C9 and 2C19 Substrates, <i>S</i> -Warfarin, Tolbutamide, Flurbiprofen, and Omeprazole. Drug Metabolism and Disposition, 2015, 43, 1408-1416.	1.7	41
7	Parkinson Disease: Diffusion MR Imaging to Detect Nigrostriatal Pathway Loss in a Marmoset Model Treated with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Radiology, 2015, 275, 430-437.	3.6	39
8	Preclinical Study of Novel Gene Silencer Pyrrole-Imidazole Polyamide Targeting Human TGF- \hat{l}^21 Promoter for Hypertrophic Scars in a Common Marmoset Primate Model. PLoS ONE, 2015, 10, e0125295.	1.1	34
9	Qualitative De Novo Analysis of Full Length cDNA and Quantitative Analysis of Gene Expression for Common Marmoset (Callithrix jacchus) Transcriptomes Using Parallel Long-Read Technology and Short-Read Sequencing. PLoS ONE, 2014, 9, e100936.	1.1	29
10	Marmoset cytochrome P450 2D8 in livers and small intestines metabolizes typical human P450 2D6 substrates, metoprolol, bufuralol and dextromethorphan. Xenobiotica, 2015, 45, 766-772.	0.5	26
11	PET Analysis of Dopaminergic Neurodegeneration in Relation to Immobility in the MPTP-Treated Common Marmoset, a Model for Parkinson's Disease. PLoS ONE, 2012, 7, e46371.	1.1	26
12	Simultaneous pharmacokinetics evaluation of human cytochrome P450 probes, caffeine, warfarin, omeprazole, metoprolol and midazolam, in common marmosets (<i>Callithrix jacchus</i>). Xenobiotica, 2016, 46, 163-168.	0.5	24
13	Activation and Deactivation of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine by Cytochrome P450 Enzymes and Flavin-Containing Monooxygenases in Common Marmosets (<i>Callithrix jacchus</i> Drug Metabolism and Disposition, 2015, 43, 735-742.	1.7	23
14	Marmoset Cytochrome P450 3A4 Ortholog Expressed in Liver and Small-Intestine Tissues Efficiently Metabolizes Midazolam, Alprazolam, Nifedipine, and Testosterone. Drug Metabolism and Disposition, 2017, 45, 457-467.	1.7	23
15	Large-Area Fluorescence and Electron Microscopic Correlative Imaging With Multibeam Scanning Electron Microscopy. Frontiers in Neural Circuits, 2019, 13, 29.	1.4	22
16	Individual Differences in Metabolic Clearance of S-Warfarin Efficiently Mediated by Polymorphic Marmoset Cytochrome P450 2C19 in Livers. Drug Metabolism and Disposition, 2016, 44, 911-915.	1.7	21
17	Normal tension glaucoma-like degeneration of the visual system in aged marmosets. Scientific Reports, 2019, 9, 14852.	1.6	20
18	Substrate Selectivities and Catalytic Activities of Marmoset Liver Cytochrome P450 2A6 Differed from Those of Human P450 2A6. Drug Metabolism and Disposition, 2015, 43, 969-976.	1.7	19

#	Article	IF	Citations
19	The Marmoset as an Animal Model of Influenza: Infection With A(H1N1)pdm09 and Highly Pathogenic A(H5N1) Viruses via the Conventional or Tracheal Spray Route. Frontiers in Microbiology, 2018, 9, 844.	1.5	19
20	Marmoset cytochrome P450 4A11, a novel arachidonic acid and lauric acid ï‰-hydroxylase expressed in liver and kidney tissues. Xenobiotica, 2017, 47, 553-561.	0.5	16
21	In vivo and in vitro diclofenac 5-hydroxylation mediated primarily by cytochrome P450 3A enzymes in common marmoset livers genotyped for P450 2C19 variants. Biochemical Pharmacology, 2018, 152, 272-278.	2.0	16
22	Oxidation of R- and S-omeprazole stereoselectively mediated by liver microsomal cytochrome P450 2C19 enzymes from cynomolgus monkeys and common marmosets. Biochemical Pharmacology, 2016, 120, 56-62.	2.0	14
23	Thioacetamide-induced hepatic fibrosis in the common marmoset. Experimental Animals, 2018, 67, 321-327.	0.7	14
24	Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine. Xenobiotica, 2016, 46, 977-985.	0.5	13
25	Novel gastrointestinal disease in common marmosets characterised by duodenal dilation: a clinical and pathological study. Scientific Reports, 2020, 10, 3793.	1.6	13
26	Strong Induction of Cytochrome P450 1A/3A, But not P450 2B, in Cultured Hepatocytes from Common Marmosets and Cynomolgus Monkeys by Typical Human P450 Inducing Agents. Drug Metabolism Letters, 2017, 10, 244-253.	0.5	13
27	<i>Pentatrichomonas hominis</i> in laboratory-bred common marmosets. Experimental Animals, 2015, 64, 363-368.	0.7	12
28	A case of nontraumatic gas gangrene in a common marmoset (<i>Callithrix jacchus</i>). Journal of Veterinary Medical Science, 2015, 77, 1673-1676.	0.3	12
29	Elucidation of developmental patterns of marmoset corpus callosum through a comparative MRI in marmosets, chimpanzees, and humans. Neuroscience Research, 2017, 122, 25-34.	1.0	12
30	Molecular Cloning, Tissue Distribution, and Functional Characterization of Marmoset Cytochrome P450 1A1, 1A2, and 1B1. Drug Metabolism and Disposition, 2015, 44, 8-15.	1.7	11
31	A New Marmoset P450 4F12 Enzyme Expressed in Small Intestines and Livers Efficiently Metabolizes Antihistaminic Drug Ebastine. Drug Metabolism and Disposition, 2016, 44, 833-841.	1.7	11
32	Regio- and Stereo-Selective Oxidation of a Cardiovascular Drug, Metoprolol, Mediated by Cytochrome P450 2D and 3A Enzymes in Marmoset Livers. Drug Metabolism and Disposition, 2017, 45, 896-899.	1.7	11
33	Effects of aging and rifampicin pretreatment on the pharmacokinetics of human cytochrome P450 probes caffeine, warfarin, omeprazole, metoprolol and midazolam in common marmosets genotyped for <i>cytochrome P450 2C19</i>	0.5	11
34	l-DOPA-induced behavioral sensitization of motor activity in the MPTP-treated common marmoset as a Parkinson's disease model. Pharmacology Biochemistry and Behavior, 2014, 127, 62-69.	1.3	10
35	Preclinical Study of DNA-Recognized Peptide Compound Pyrrole-Imidazole Polyamide Targeting Human TGF-Î ² 1 Promoter for Progressive Renal Diseases in the Common Marmoset. Molecules, 2019, 24, 3178.	1.7	10
36	Molecular Cloning and Characterization of Marmoset Aldehyde Oxidase. Drug Metabolism and Disposition, 2017, 45, 883-886.	1.7	9

3

#	Article	IF	CITATIONS
37	Progesterone hydroxylation by cytochromes P450 2C and 3A enzymes in marmoset liver microsomes. Xenobiotica, 2018, 48, 757-763.	0.5	9
38	Molecular characterization of functional UDP-glucuronosyltransferases 1A and 2B in common marmosets. Biochemical Pharmacology, 2020, 172, 113748.	2.0	9
39	An improved de novo genome assembly of the common marmoset genome yields improved contiguity and increased mapping rates of sequence data. BMC Genomics, 2020, 21, 243.	1.2	9
40	Marmoset Flavin-Containing Monooxygenase 3 in the Liver Is a Major Benzydamine and Sulindac Sulfide Oxygenase. Drug Metabolism and Disposition, 2017, 45, 497-500.	1.7	8
41	Association with polymorphic marmoset cytochrome P450 2C19 of in vivo hepatic clearances of chirally separated R-omeprazole and S-warfarin using individual marmoset physiologically based pharmacokinetic models. Xenobiotica, 2018, 48, 1072-1077.	0.5	8
42	Current practices in nutrition management and disease incidence of common marmosets (<i>Callithrix jacchus</i>). Journal of Medical Primatology, 2021, 50, 164-175.	0.3	8
43	Survey and Experimental Infection of Enteropathogenic Escherichia coli in Common Marmosets (Callithrix jacchus). PLoS ONE, 2016, 11, e0160116.	1.1	8
44	$\hat{l}_{\pm}\text{-Synuclein}$ aggregation in the olfactory bulb of middle-aged common marmoset. Neuroscience Research, 2016, 106, 55-61.	1.0	7
45	Caffeine 7- <i>N</i> -demethylation and <i>C-</i> 8-oxidation mediated by liver microsomal cytochrome P450 enzymes in common marmosets. Xenobiotica, 2016, 46, 573-578.	0.5	7
46	Marmoset pulmonary cytochrome P450 2F1 oxidizes biphenyl and 7-ethoxycoumarin and hepatic human P450 substrates. Xenobiotica, 2018, 48, 656-662.	0.5	7
47	Survey of Drug Oxidation Activities in Hepatic and Intestinal Microsomes of Individual Common Marmosets, a New Nonhuman Primate Animal Model. Current Drug Metabolism, 2019, 20, 103-113.	0.7	7
48	Functional characterization and tissue expression of marmoset cytochrome P450 2E1. Biopharmaceutics and Drug Disposition, 2017, 38, 394-397.	1.1	6
49	Terfenadine t-butyl hydroxylation catalyzed by human and marmoset cytochrome P450 3A and 4F enzymes in livers and small intestines. Xenobiotica, 2018, 48, 342-347.	0.5	5
50	Marmoset cytochrome P450 2B6, a propofol hydroxylase expressed in liver. Xenobiotica, 2019, 49, 265-269.	0.5	5
51	Establishment of a diabetes mellitus type 1 model in the common marmoset. Scientific Reports, 2019 , 9 , 14546 .	1.6	4
52	Draft Genome Sequence of Enteropathogenic Escherichia coli, Isolated from the Bloody Stool Sample of a Common Marmoset (Callithrix jacchus). Genome Announcements, 2015, 3, .	0.8	3
53	Cloning and expression of a novel catechol- $\langle i \rangle O \langle i \rangle$ -methyltransferase in common marmosets. Journal of Veterinary Medical Science, 2017, 79, 267-272.	0.3	3
54	Molecular cloning and tissue distribution of a novel marmoset ABC transporter. Biopharmaceutics and Drug Disposition, 2018, 39, 59-63.	1.1	3

#	Article	IF	CITATIONS
55	Anti†RPM1 antibodies in patients with retinal degeneration. Clinical and Experimental Ophthalmology, 2018, 46, 1087-1089.	1.3	3
56	Localization of SOX2-positive stem/progenitor cells in the anterior lobe of the common marmoset (<i>Callithrix jacchus</i>) pituitary. Journal of Reproduction and Development, 2018, 64, 417-422.	0.5	3
57	Measurement of baseline locomotion and other behavioral traits in a common marmoset model of Parkinson's disease established by a single administration regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: providing reference data for efficacious preclinical evaluations. Behavioural Pharmacology. 2020. 31. 45-60.	0.8	3
58	Serum antiâ€recoverin antibodies is found in elderly patients with retinitis pigmentosa and cancer. Acta Ophthalmologica, 2020, 98, e722-e729.	0.6	3
59	A pilot study to establish human Tâ€cell leukemia virus type 1 (HTLVâ€1) carrier model using common marmoset (Callithrix jacchus). Journal of Medical Primatology, 2020, 49, 86-94.	0.3	3
60	Levels of Anti-Retinal Antibodies in Retinal Detachment and Proliferative Vitreoretinopathy. Current Eye Research, 2018, 43, 804-809.	0.7	2
61	A Case of Intestinal Mucormycosis in a Common Marmoset (<i>Callithrix jacchus</i>). Journal of Veterinary Medical Science, 2012, 74, 357-359.	0.3	1
62	Cloning and tissue expression of cytochrome P450 2S1, 4V2, 7A1, 7B1, 8B1, 24A1, 26A1, 26C1, 27A1, 39A1, and 51A1 in marmosets. Drug Metabolism and Pharmacokinetics, 2020, 35, 244-247.	1.1	1
63	Whole blood transfusion in common marmosets: a clinical evaluation. Experimental Animals, 2022, 71, 131-138.	0.7	1
64	Alternative methods to detect anti-TRPM1 antibodies. Clinical and Experimental Ophthalmology, 2019, 47, 148-149.	1.3	0
65	Spontaneous pulmonary adenocarcinoma in a common marmoset (Callithrix jacchus). Journal of Medical Primatology, 2021, 50, 335-338.	0.3	0