Ali Borhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9426608/publications.pdf Version: 2024-02-01

ALL RODHAN

#	Article	IF	CITATIONS
1	Scaleâ€up issues for commercial depth filters in bioprocessing. Biotechnology and Bioengineering, 2022, , .	1.7	0
2	Photothermal Atomic Force Microscopy Coupled with Infrared Spectroscopy (AFM-IR) Analysis of High Extinction Coefficient Materials: A Case Study with Silica and Silicate Glasses. Analytical Chemistry, 2022, 94, 5231-5239.	3.2	8
3	Shear-induced unidirectional deposition of bacterial cellulose microfibrils using rising bubble stream cultivation. Carbohydrate Polymers, 2021, 255, 117328.	5.1	7
4	Flow and residence time distribution in small-scale dual-layer depth filter capsules. Journal of Membrane Science, 2021, 617, 118625.	4.1	7
5	A patient-specific model of reactive air pollutant uptake in proximal airways of the lung: Effect of tracheal deviation. Applied Mathematical Modelling, 2021, 91, 58-73.	2.2	1
6	Quantitative interpretation of protein breakthrough curves in small-scale depth filter modules for bioprocessing. Journal of Membrane Science, 2021, 627, 119217.	4.1	6
7	A Volume-Corrected Wenzel Model. ACS Omega, 2020, 5, 8875-8884.	1.6	21
8	An approximate analytical approach to estimate the diffusivity of toxic chemicals in polymer barrier materials from the time evolution of sessile drop profiles. Polymer Bulletin, 2019, 76, 339-364.	1.7	1
9	Chemically Controlled Spatiotemporal Oscillations of Colloidal Assemblies. Angewandte Chemie - International Edition, 2017, 56, 7817-7821.	7.2	55
10	Chemically Controlled Spatiotemporal Oscillations of Colloidal Assemblies. Angewandte Chemie, 2017, 129, 7925-7929.	1.6	12
11	Effect of a planar interface on time-averaged locomotion of a spherical squirmer in a viscoelastic fluid. Physics of Fluids, 2017, 29, .	1.6	17
12	Neural Devices: Conducting Polymer Microcups for Organic Bioelectronics and Drug Delivery Applications (Adv. Mater. 39/2017). Advanced Materials, 2017, 29, .	11.1	0
13	Conducting Polymer Microcups for Organic Bioelectronics and Drug Delivery Applications. Advanced Materials, 2017, 29, 1702576.	11.1	28
14	Effect of Gravity on the Configuration of Droplets on Two-Dimensional Physically Patterned Surfaces. Langmuir, 2016, 32, 3858-3866.	1.6	11
15	Self-electrophoresis of spheroidal electrocatalytic swimmers. Physics of Fluids, 2015, 27, .	1.6	25
16	A general flux-based analysis for spherical electrocatalytic nanomotors. Physics of Fluids, 2015, 27, .	1.6	28
17	Effects of Hierarchical Surface Roughness on Droplet Contact Angle. Langmuir, 2015, 31, 6752-6762.	1.6	95
18	Coalescence of viscous drops translating through a capillary tube. Heat and Mass Transfer, 2014, 50, 341-350.	1.2	0

Ali Borhan

#	Article	IF	CITATIONS
19	Kinematic matrix theory and universalities in self-propellers and active swimmers. Physical Review E, 2014, 89, 062304.	0.8	16
20	Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid. Physical Review E, 2014, 90, 043002.	0.8	29
21	Nanomotor mechanisms and motive force distributions from nanorotor trajectories. Physical Review E, 2013, 88, 062317.	0.8	20
22	Chiral diffusion of rotary nanomotors. Physical Review E, 2013, 87, 050301.	0.8	29
23	Prediction of hot spots of ozone flux in a Rhesus monkey lung during steady inspiratory flow. , 2012, ,		0
24	Confined drop motion in viscoelastic two-phase systems. Physics of Fluids, 2009, 21, .	1.6	9
25	Coarse-Grained Interaction of a Fluid withÂaÂPhysically-Patterned Solid Surface: Application to Nanodroplet Wetting. Journal of Low Temperature Physics, 2009, 157, 277-295.	0.6	16
26	Ozone uptake during inspiratory flow in a model of the larynx, trachea and primary bronchial bifurcation. Chemical Engineering Science, 2009, 64, 4640-4648.	1.9	4
27	Comparison of Axisymmetric and Three-Dimensional Models for Gas Uptake in a Single Bifurcation During Steady Expiration. Journal of Biomechanical Engineering, 2008, 130, 011013.	0.6	3
28	Three-Dimensional Simulations of Reactive Gas Uptake in Single Airway Bifurcations. Annals of Biomedical Engineering, 2007, 35, 235-249.	1.3	16
29	An Axisymmetric Single-Path Model for Gas Transport in the Conducting Airways. Journal of Biomechanical Engineering, 2006, 128, 69-75.	0.6	6
30	Stability of the shape of a surfactant-laden drop translating at low Reynolds number. Physics of Fluids, 2000, 12, 773-784.	1.6	22
31	Effect of surfactants on the motion of drops through circular tubes. Physics of Fluids A, Fluid Dynamics, 1992, 4, 2628-2640.	1.6	55
32	THERMOCAPILLARY MIGRATION OF SLIGHTLY DEFORMED DROPLETS. Particulate Science and Technology, 1990, 8, 191-198.	1.1	21