
Robbie G Majzner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/942659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nature Medicine, 2018, 24, 20-28.	30.7	1,030
2	Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discovery, 2018, 8, 1219-1226.	9.4	661
3	c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature, 2019, 576, 293-300.	27.8	480
4	Clinical lessons learned from the first leg of the CAR T cell journey. Nature Medicine, 2019, 25, 1341-1355.	30.7	400
5	CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. Clinical Cancer Research, 2019, 25, 2560-2574.	7.0	369
6	GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature, 2022, 603, 934-941.	27.8	339
7	Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nature Medicine, 2018, 24, 572-579.	30.7	321
8	Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science, 2021, 372, .	12.6	297
9	Tuning the Antigen Density Requirement for CAR T-cell Activity. Cancer Discovery, 2020, 10, 702-723.	9.4	296
10	CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nature Medicine, 2021, 27, 1419-1431.	30.7	273
11	Programming CAR-T cells to kill cancer. Nature Biomedical Engineering, 2018, 2, 377-391.	22.5	267
12	Tumor Antigen and Receptor Densities Regulate Efficacy of a Chimeric Antigen Receptor Targeting Anaplastic Lymphoma Kinase. Molecular Therapy, 2017, 25, 2189-2201.	8.2	264
13	Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nature Medicine, 2020, 26, 712-719.	30.7	172
14	Assessment of programmed deathâ€ligand 1 expression and tumorâ€associated immune cells in pediatric cancer tissues. Cancer, 2017, 123, 3807-3815.	4.1	135
15	Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. Nature Methods, 2020, 17, 852-860.	19.0	123
16	Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers. Cancer Cell, 2017, 31, 476-485.	16.8	116
17	CAR T Cell Therapy for Neuroblastoma. Frontiers in Immunology, 2018, 9, 2380.	4.8	107
18	Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine, 2022, 28, 333-344	30.7	105

ROBBIE G MAJZNER

#	Article	IF	CITATIONS
19	Durable regression of Medulloblastoma after regional and intravenous delivery of anti-HER2 chimeric antigen receptor T cells. , 2018, 6, 30.		97
20	Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell, 2022, 185, 1745-1763.e22.	28.9	88
21	GPC2-CAR TÂcells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell, 2022, 40, 53-69.e9.	16.8	60
22	Immune receptor inhibition through enforced phosphatase recruitment. Nature, 2020, 586, 779-784.	27.8	59
23	Phase I Trial Using CD19/CD22 Bispecific CAR T Cells in Pediatric and Adult Acute Lymphoblastic Leukemia (ALL). Blood, 2019, 134, 744-744.	1.4	42
24	In vivo imaging of nanoparticle-labeled CAR T cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	40
25	NOT-Gated CD93 CAR T Cells Effectively Target AML with Minimized Endothelial Cross-Reactivity. Blood Cancer Discovery, 2021, 2, 648-665.	5.0	37
26	Immunotherapy of Neuroblastoma: Facts and Hopes. Clinical Cancer Research, 2022, 28, 3196-3206.	7.0	29
27	CD58 Aberrations Limit Durable Responses to CD19 CAR in Large B Cell Lymphoma Patients Treated with Axicabtagene Ciloleucel but Can be Overcome through Novel CAR Engineering. Blood, 2020, 136, 53-54.	1.4	28
28	PET Reporter Gene Imaging and Ganciclovir-Mediated Ablation of Chimeric Antigen Receptor T Cells in Solid Tumors. Cancer Research, 2020, 80, 4731-4740.	0.9	24
29	Transition to a mesenchymal state in neuroblastoma confers resistance to anti-GD2 antibody via reduced expression of ST8SIA1. Nature Cancer, 2022, 3, 976-993.	13.2	23
30	Neurotoxicity Associated with a High-Affinity GD2 CAR—Letter. Cancer Immunology Research, 2018, 6, 494-495.	3.4	21
31	Augmenting anti-CD19 and anti-CD22 CAR T-cell function using PD-1-CD28 checkpoint fusion proteins. Blood Cancer Journal, 2021, 11, 108.	6.2	17
32	Circulating DNA for Molecular Response Prediction, Characterization of Resistance Mechanisms and Quantification of CAR T-Cells during Axicabtagene Ciloleucel Therapy. Blood, 2019, 134, 550-550.	1.4	13
33	How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol. Pediatric Radiology, 2022, 52, 354-366.	2.0	12
34	Low CD19 Antigen Density Diminishes Efficacy of CD19 CAR T Cells and Can be Overcome By Rational Redesign of CAR Signaling Domains. Blood, 2018, 132, 963-963.	1.4	10
35	Immune-Based Approaches for the Treatment of Pediatric Malignancies. Annual Review of Cancer Biology, 2020, 4, 353-370.	4.5	7
36	Charting a path for prioritization of novel agents for clinical trials in osteosarcoma: A report from the Children's Oncology Group New Agents for Osteosarcoma Task Force. Pediatric Blood and Cancer, 2021, 68, e29188.	1.5	7

ROBBIE G MAJZNER

#	Article	IF	CITATIONS
37	Abstract CT031: GD2 CAR T cells mediate clinical activity and manageable toxicity in children and young adults with DIPG and H3K27M-mutated diffuse midline gliomas. , 2021, , .		7
38	EPCT-14. GD2 CAR T-CELLS MEDIATE CLINICAL ACTIVITY AND MANAGEABLE TOXICITY IN CHILDREN AND YOUNG ADULTS WITH H3K27M-MUTATED DIPG AND SPINAL CORD DMG. Neuro-Oncology, 2021, 23, i49-i50.	1.2	6
39	Identification of dual positive CD19+/CD3+ T cells in a leukapheresis product undergoing CAR transduction: a case report. , 2020, 8, e001073.		2
40	Abstract 1548: Potent activity of CAR T cells targeting the oncofetal protein GPC2 engineered to recognize low antigen density in neuroblastoma. , 2021, , .		0
41	Identification of Dual Positive CD19+/CD3+ T Cells in an Apheresis Product Undergoing Chimeric Antigen Receptor (CAR) Transduction. Blood, 2019, 134, 4471-4471.	1.4	0
42	Immunotherapy for Pediatric Sarcomas. Pediatric Oncology, 2021, , 165-180.	0.5	0
43	Shared Expression of CD93 and Other Antigens By AML and Endothelial Cells Highlights a Need for Rational Combinatorial Targeting. Blood, 2020, 136, 22-22.	1.4	0