Amir AghaKouchak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9426482/publications.pdf Version: 2024-02-01

		9264	12944
222	19,590	74	131
papers	citations	h-index	g-index
232	232	232	14668
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Future climate risk from compound events. Nature Climate Change, 2018, 8, 469-477.	18.8	1,074
2	Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics, 2015, 53, 452-480.	23.0	605
3	Multivariate Standardized Drought Index: A parametric multi-index model. Advances in Water Resources, 2013, 57, 12-18.	3.8	577
4	A typology of compound weather and climate events. Nature Reviews Earth & Environment, 2020, 1, 333-347.	29.7	536
5	Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophysical Research Letters, 2014, 41, 8847-8852.	4.0	511
6	Substantial increase in concurrent droughts and heatwaves in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11484-11489.	7.1	447
7	Non-stationary extreme value analysis in a changing climate. Climatic Change, 2014, 127, 353-369.	3.6	390
8	Global integrated drought monitoring and prediction system. Scientific Data, 2014, 1, 140001.	5.3	383
9	Climate Extremes and Compound Hazards in a Warming World. Annual Review of Earth and Planetary Sciences, 2020, 48, 519-548.	11.0	330
10	Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate. Scientific Reports, 2014, 4, 7093.	3.3	317
11	Hydrologic evaluation of satellite precipitation products over a mid-size basin. Journal of Hydrology, 2011, 397, 225-237.	5.4	297
12	A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, 2015, 76, 140-145.	3.8	297
13	Compounding effects of sea level rise and fluvial flooding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9785-9790.	7.1	294
14	A Nonparametric Multivariate Multi-Index Drought Monitoring Framework. Journal of Hydrometeorology, 2014, 15, 89-101.	1.9	280
15	Water and climate: Recognize anthropogenic drought. Nature, 2015, 524, 409-411.	27.8	278
16	Understanding and managing connected extreme events. Nature Climate Change, 2020, 10, 611-621.	18.8	273
17	Aral Sea syndrome desiccates Lake Urmia: Call for action. Journal of Great Lakes Research, 2015, 41, 307-311.	1.9	271
18	Changes in concurrent monthly precipitation and temperature extremes. Environmental Research Letters, 2013, 8, 034014.	5.2	248

#	Article	IF	CITATIONS
19	Iran's Socio-economic Drought: Challenges of a Water-Bankrupt Nation. Iranian Studies, 2016, 49, 997-1016.	0.1	247
20	Increasing probability of mortality during Indian heat waves. Science Advances, 2017, 3, e1700066.	10.3	247
21	Evaluation of satellite-retrieved extreme precipitation rates across the central United States. Journal of Geophysical Research, 2011, 116, .	3.3	240
22	Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nature Communications, 2021, 12, 2754.	12.8	229
23	Multivariate <scp>C</scp> opula <scp>A</scp> nalysis <scp>T</scp> oolbox (MvCAT): Describing dependence and underlying uncertainty using a <scp>B</scp> ayesian framework. Water Resources Research, 2017, 53, 5166-5183.	4.2	226
24	From TRMM to GPM: How well can heavy rainfall be detected from space?. Advances in Water Resources, 2016, 88, 1-7.	3.8	216
25	Water shortages worsened by reservoir effects. Nature Sustainability, 2018, 1, 617-622.	23.7	213
26	Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nature Climate Change, 2020, 10, 191-199.	18.8	210
27	On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Scientific Reports, 2017, 7, 81.	3.3	204
28	A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. Journal of Hydrology, 2018, 556, 865-876.	5.4	199
29	Advanced Concepts on Remote Sensing of Precipitation at Multiple Scales. Bulletin of the American Meteorological Society, 2011, 92, 1353-1357.	3.3	192
30	Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1695-1707.	3.3	187
31	Agricultural risks from changing snowmelt. Nature Climate Change, 2020, 10, 459-465.	18.8	187
32	Systematic and random error components in satellite precipitation data sets. Geophysical Research Letters, 2012, 39, .	4.0	181
33	Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. Journal of Hydrology, 2019, 569, 203-217.	5.4	171
34	Cumulative hazard: The case of nuisance flooding. Earth's Future, 2017, 5, 214-223.	6.3	168
35	How do natural hazards cascade to cause disasters?. Nature, 2018, 561, 458-460.	27.8	165
36	Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth-Science Reviews, 2020, 201, 103043.	9.1	162

#	Article	IF	CITATIONS
37	Temperature impacts on the water year 2014 drought in California. Geophysical Research Letters, 2015, 42, 4384-4393.	4.0	161
38	Probabilistic estimates of drought impacts on agricultural production. Geophysical Research Letters, 2017, 44, 7799-7807.	4.0	154
39	The PERSIANN family of global satellite precipitation data: a review and evaluation of products. Hydrology and Earth System Sciences, 2018, 22, 5801-5816.	4.9	151
40	A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Science Advances, 2020, 6, .	10.3	148
41	A multivariate approach for persistence-based drought prediction: Application to the 2010–2011 East Africa drought. Journal of Hydrology, 2015, 526, 127-135.	5.4	145
42	Increased nuisance flooding along the coasts of the United States due to sea level rise: Past and future. Geophysical Research Letters, 2015, 42, 9846-9852.	4.0	144
43	Improving Precipitation Estimation Using Convolutional Neural Network. Water Resources Research, 2019, 55, 2301-2321.	4.2	142
44	Multihazard Scenarios for Analysis of Compound Extreme Events. Geophysical Research Letters, 2018, 45, 5470-5480.	4.0	139
45	Trends in meteorological and agricultural droughts in Iran. Theoretical and Applied Climatology, 2015, 119, 679-688.	2.8	137
46	Global trends and patterns of drought from space. Theoretical and Applied Climatology, 2014, 117, 441-448.	2.8	135
47	Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Science Reviews, 2020, 210, 103349.	9.1	132
48	From Rain Tanks to Catchments: Use of Low-Impact Development To Address Hydrologic Symptoms of the Urban Stream Syndrome. Environmental Science & Technology, 2015, 49, 11264-11280.	10.0	129
49	A baseline probabilistic drought forecasting framework using standardized soil moisture index: application to the 2012 United States drought. Hydrology and Earth System Sciences, 2014, 18, 2485-2492.	4.9	128
50	Anthropogenic Drought: Definition, Challenges, and Opportunities. Reviews of Geophysics, 2021, 59, e2019RG000683.	23.0	126
51	What Is Nuisance Flooding? Defining and Monitoring an Emerging Challenge. Water Resources Research, 2018, 54, 4218-4227.	4.2	123
52	A near real-time satellite-based global drought climate data record. Environmental Research Letters, 2012, 7, 044037.	5.2	112
53	A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7520-7533.	3.3	109
54	Linking statistical and hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries. Advances in Water Resources, 2019, 128, 28-38.	3.8	107

#	Article	IF	CITATIONS
55	Flexibility and intensity of global water use. Nature Sustainability, 2019, 2, 515-523.	23.7	106
56	Quantifying Changes in Future Intensityâ€Durationâ€Frequency Curves Using Multimodel Ensemble Simulations. Water Resources Research, 2018, 54, 1751-1764.	4.2	105
57	Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,250.	3.3	104
58	Anthropogenic drought dominates groundwater depletion in Iran. Scientific Reports, 2021, 11, 9135.	3.3	104
59	Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula. Advances in Water Resources, 2010, 33, 624-634.	3.8	103
60	Quantifying climate change impacts on hydropower generation and implications on electric grid greenhouse gas emissions and operation. Energy, 2016, 111, 295-305.	8.8	99
61	Predicting nonstationary flood frequencies: Evidence supports an updated stationarity thesis in the <scp>U</scp> nited <scp>S</scp> tates. Water Resources Research, 2017, 53, 5469-5494.	4.2	99
62	A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling. Journal of Hydrology, 2016, 541, 401-420.	5.4	98
63	Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrological Processes, 2014, 28, 2262-2270.	2.6	94
64	How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts?. Water Resources Research, 2015, 51, 2847-2864.	4.2	94
65	Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability. Scientific Reports, 2017, 7, 6282.	3.3	92
66	Extended contingency table: Performance metrics for satellite observations and climate model simulations. Water Resources Research, 2013, 49, 7144-7149.	4.2	91
67	Quantifying Anthropogenic Stress on Groundwater Resources. Scientific Reports, 2017, 7, 12910.	3.3	87
68	How Has Human-Induced Climate Change Affected California Drought Risk?. Journal of Climate, 2016, 29, 111-120.	3.2	84
69	Compounding effects of human activities and climatic changes on surface water availability in Iran. Climatic Change, 2019, 152, 379-391.	3.6	84
70	The need to integrate flood and drought disaster risk reduction strategies. Water Security, 2020, 11, 100070.	2.5	83
71	Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmospheric Research, 2021, 250, 105369.	4.1	83
72	The rise of compound warm-season droughts in Europe. Science Advances, 2021, 7, .	10.3	83

#	Article	IF	CITATIONS
73	Climate-informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts. Environmental Research Letters, 2018, 13, 084010.	5.2	82
74	Global, Regional, and Megacity Trends in the Highest Temperature of the Year: Diagnostics and Evidence for Accelerating Trends. Earth's Future, 2018, 6, 71-79.	6.3	81
75	Global snow drought hot spots and characteristics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19753-19759.	7.1	80
76	Accounting for Uncertainties of the TRMM Satellite Estimates. Remote Sensing, 2009, 1, 606-619.	4.0	79
77	Assessing the Impacts of Different WRF Precipitation Physics in Hurricane Simulations. Weather and Forecasting, 2012, 27, 1003-1016.	1.4	79
78	Rainfall-triggered slope instabilities under a changing climate: comparative study using historical and projected precipitation extremes. Canadian Geotechnical Journal, 2017, 54, 117-127.	2.8	78
79	Increasing heat waves and warm spells in India, observed from a multiaspect framework. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3837-3858.	3.3	73
80	Error characterization of TRMM Multisatellite Precipitation Analysis (TMPA-3B42) products over India for different seasons. Journal of Hydrology, 2015, 529, 1302-1312.	5.4	69
81	Lessons from the Oroville dam. Science, 2017, 355, 1139-1140.	12.6	69
82	Amplified warming of droughts in southern United States in observations and model simulations. Science Advances, 2018, 4, eaat2380.	10.3	69
83	A water-energy balance approach for multi-category drought assessment across globally diverse hydrological basins. Agricultural and Forest Meteorology, 2019, 264, 247-265.	4.8	69
84	Australia's Drought: Lessons for California. Science, 2014, 343, 1430-1431.	12.6	67
85	Entropy–Copula in Hydrology and Climatology. Journal of Hydrometeorology, 2014, 15, 2176-2189.	1.9	66
86	Centuryâ€scale causal relationships between global dry/wet conditions and the state of the Pacific and Atlantic Oceans. Geophysical Research Letters, 2016, 43, 6528-6537.	4.0	65
87	Seasonal and regional biases in CMIP5 precipitation simulations. Climate Research, 2014, 60, 35-50.	1.1	62
88	Going beyond the flood insurance rate map: insights from flood hazard map co-production. Natural Hazards and Earth System Sciences, 2018, 18, 1097-1120.	3.6	60
89	Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California. Applied Energy, 2018, 225, 522-534.	10.1	59
90	Impacts of ozone and climate change on yields of perennial crops in California. Nature Food, 2020, 1, 166-172.	14.0	59

#	Article	IF	CITATIONS
91	Mountain snowpack response to different levels of warming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10932-10937.	7.1	57
92	Skilful forecasting of global fire activity using seasonal climate predictions. Nature Communications, 2018, 9, 2718.	12.8	57
93	A Diagnostic Framework for Understanding Climatology of Tails of Hourly Precipitation Extremes in the United States. Water Resources Research, 2018, 54, 6725-6738.	4.2	57
94	Domino effect of climate change over two millennia in ancient China's Hexi Corridor. Nature Sustainability, 2019, 2, 957-961.	23.7	57
95	Modeling Radar Rainfall Estimation Uncertainties: Random Error Model. Journal of Hydrologic Engineering - ASCE, 2010, 15, 265-274.	1.9	56
96	Flood Forecasting and Inundation Mapping Using HiResFlood-UCI and Near-Real-Time Satellite Precipitation Data: The 2008 Iowa Flood. Journal of Hydrometeorology, 2015, 16, 1171-1183.	1.9	56
97	A generalized framework for process-informed nonstationary extreme value analysis. Advances in Water Resources, 2019, 130, 270-282.	3.8	56
98	A hybrid statisticalâ€dynamical framework for meteorological drought prediction: Application to the southwestern United States. Water Resources Research, 2016, 52, 5095-5110.	4.2	53
99	Unraveling anthropogenic influence on the changing risk of heat waves in China. Geophysical Research Letters, 2017, 44, 5078-5085.	4.0	53
100	Collaborative Modeling With Fineâ€Resolution Data Enhances Flood Awareness, Minimizes Differences in Flood Perception, and Produces Actionable Flood Maps. Earth's Future, 2020, 8, e2019EF001391.	6.3	53
101	Geometrical Characterization of Precipitation Patterns. Journal of Hydrometeorology, 2011, 12, 274-285.	1.9	51
102	A satellite-based global landslide model. Natural Hazards and Earth System Sciences, 2013, 13, 1259-1267.	3.6	50
103	COSORE: A community database for continuous soil respiration and other soilâ€atmosphere greenhouse gas flux data. Global Change Biology, 2020, 26, 7268-7283.	9.5	50
104	Latitudinal heterogeneity and hotspots of uncertainty in projected extreme precipitation. Environmental Research Letters, 2019, 14, 124032.	5.2	48
105	Climateâ€Induced Changes in the Risk of Hydrological Failure of Major Dams in California. Geophysical Research Letters, 2019, 46, 2130-2139.	4.0	48
106	Possible Increased Frequency of ENSO-Related Dry and Wet Conditions over Some Major Watersheds in a Warming Climate. Bulletin of the American Meteorological Society, 2020, 101, E409-E426.	3.3	48
107	A perturbation approach for assessing trends in precipitation extremes across Iran. Journal of Hydrology, 2014, 519, 1420-1427.	5.4	47
108	Can Protracted Drought Undermine the Structural Integrity of California's Earthen Levees?. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	3.0	47

#	Article	IF	CITATIONS
109	Spatial and temporal patterns of propagation from meteorological to hydrological droughts in Brazil. Journal of Hydrology, 2021, 603, 126902.	5.4	47
110	Northern Hemisphere drought risk in a warming climate. Npj Climate and Atmospheric Science, 2021, 4,	6.8	47
111	Heat wave Intensity Duration Frequency Curve: A Multivariate Approach for Hazard and Attribution Analysis. Scientific Reports, 2019, 9, 14117.	3.3	46
112	GHWR, a multi-method global heatwave and warm-spell record and toolbox. Scientific Data, 2018, 5, 180206.	5.3	46
113	Advancing the Remote Sensing of Precipitation. Bulletin of the American Meteorological Society, 2011, 92, 1271-1272.	3.3	45
114	Global Precipitation Trends across Spatial Scales Using Satellite Observations. Bulletin of the American Meteorological Society, 2018, 99, 689-697.	3.3	45
115	A new interhemispheric teleconnection increases predictability of winter precipitation in southwestern US. Nature Communications, 2018, 9, 2332.	12.8	45
116	Copulaâ€based uncertainty modelling: application to multisensor precipitation estimates. Hydrological Processes, 2010, 24, 2111-2124.	2.6	43
117	A new normal for streamflow in California in a warming climate: Wetter wet seasons and drier dry seasons. Journal of Hydrology, 2018, 567, 203-211.	5.4	42
118	Resilience of MSE Walls with Marginal Backfill under a Changing Climate: Quantitative Assessment for Extreme Precipitation Events. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2017, 143, .	3.0	40
119	Implications of hydropower variability from climate change for a future, highly-renewable electric grid in California. Applied Energy, 2019, 237, 353-366.	10.1	40
120	Increasing concurrence of wildfire drivers tripled megafire critical danger days in Southern California between1982 and 2018. Environmental Research Letters, 2020, 15, 104002.	5.2	40
121	Precise Temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for Stationary and Nonstationary Processes. Water Resources Research, 2018, 54, 7435-7458.	4.2	39
122	Global Observations and CMIP6 Simulations of Compound Extremes of Monthly Temperature and Precipitation. GeoHealth, 2021, 5, e2021GH000390.	4.0	39
123	Future Population Exposure to Daytime and Nighttime Heat Waves in South Asia. Earth's Future, 2022, 10, .	6.3	39
124	Making SDGs Work for Climate Change Hotspots. Environment, 2016, 58, 24-33.	1.4	38
125	Compound hazards yield Louisiana flood. Science, 2016, 353, 1374-1374.	12.6	37
126	Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones. Scientific Reports, 2017, 7, 7350.	3.3	37

#	Article	IF	CITATIONS
127	Biases Beyond the Mean in CMIP6 Extreme Precipitation: A Global Investigation. Earth's Future, 2021, 9, e2021EF002196.	6.3	37
128	Estimation of tail dependence coefficient in rainfall accumulation fields. Advances in Water Resources, 2010, 33, 1142-1149.	3.8	36
129	A Framework for Global Multicategory and Multiscalar Drought Characterization Accounting for Snow Processes. Water Resources Research, 2019, 55, 9258-9278.	4.2	36
130	Influence of irrigation on land hydrological processes over California. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,137.	3.3	35
131	Changes in precipitation extremes in the Beijing metropolitan area during 1960–2012. Atmospheric Research, 2019, 222, 134-153.	4.1	35
132	A Vantage from Space Can Detect Earlier Drought Onset: An Approach Using Relative Humidity. Scientific Reports, 2015, 5, 8553.	3.3	34
133	California drought increases CO2 footprint of energy. Sustainable Cities and Society, 2017, 28, 450-452.	10.4	34
134	Assessing climate change impacts on California hydropower generation and ancillary services provision. Climatic Change, 2018, 151, 395-412.	3.6	34
135	Determination of water required to recover from hydrological drought: Perspective from drought propagation and non-standardized indices. Journal of Hydrology, 2020, 590, 125227.	5.4	34
136	Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data. Water Resources Management, 2010, 24, 1229-1249.	3.9	33
137	Drought threatens California's levees. Science, 2015, 349, 799-799.	12.6	33
138	Using GRACE Satellite Gravimetry for Assessing Large-Scale Hydrologic Extremes. Remote Sensing, 2017, 9, 1287.	4.0	33
139	The interactions between hydrological drought evolution and precipitation-streamflow relationship. Journal of Hydrology, 2021, 597, 126210.	5.4	33
140	Stochastic modeling of suspended sediment load in alluvial rivers. Advances in Water Resources, 2018, 119, 188-196.	3.8	32
141	Evaluating options for balancing the water – electricity nexus in California: Part 2—Greenhouse gas and renewable energy utilization impacts. Science of the Total Environment, 2014, 497-498, 711-724.	8.0	31
142	Precipitation Prediction Skill for the West Coast United States: From Short to Extended Range. Journal of Climate, 2019, 32, 161-182.	3.2	31
143	Projecting nuisance flooding in a warming climate using generalized linear models and Gaussian processes. Journal of Geophysical Research: Oceans, 2016, 121, 8008-8020.	2.6	29
144	Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) optimization framework. Environmental Modelling and Software, 2018, 104, 215-235.	4.5	29

#	Article	IF	CITATIONS
145	An educational model for ensemble streamflow simulation and uncertainty analysis. Hydrology and Earth System Sciences, 2013, 17, 445-452.	4.9	28
146	Inferring land surface parameters from the diurnal variability of microwave and infrared temperatures. Physics and Chemistry of the Earth, 2015, 83-84, 28-35.	2.9	28
147	Increasing exposure of energy infrastructure to compound hazards: cascading wildfires and extreme rainfall. Environmental Research Letters, 2019, 14, 104018.	5.2	28
148	Evaluating options for Balancing the Water-Electricity Nexus in California: Part 1 – Securing Water Availability. Science of the Total Environment, 2014, 497-498, 697-710.	8.0	26
149	An object-based approach for verification of precipitation estimation. International Journal of Remote Sensing, 2015, 36, 513-529.	2.9	26
150	Droughts in Amazonia: Spatiotemporal Variability, Teleconnections, and Seasonal Predictions. Water Resources Research, 2017, 53, 10824-10840.	4.2	26
151	Broad Consistency Between Satellite and Vegetation Model Estimates of Net Primary Productivity Across Global and Regional Scales. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3603-3616.	3.0	26
152	Streamflow droughts aggravated by human activities despite management. Environmental Research Letters, 2022, 17, 044059.	5.2	24
153	Using GRACE satellite observations for separating meteorological variability from anthropogenic impacts on water availability. Scientific Reports, 2020, 10, 15098.	3.3	23
154	Non-stationary return levels of CMIP5 multi-model temperature extremes. Climate Dynamics, 2015, 44, 2947-2963.	3.8	22
155	A comparison of three remotely sensed rainfall ensemble generators. Atmospheric Research, 2010, 98, 387-399.	4.1	20
156	Geotechnical Engineering in the Face of Climate Change: Role of Multi-Physics Processes in Partially Saturated Soils. , 2018, , .		20
157	Levee Fragility Behavior under Projected Future Flooding in a Warming Climate. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	3.0	20
158	Data and analysis toolbox for modeling the nexus of food, energy, and water. Sustainable Cities and Society, 2020, 61, 102281.	10.4	19
159	The critical benefits of snowpack insulation and snowmelt for winter wheat productivity. Nature Climate Change, 2022, 12, 485-490.	18.8	19
160	Assessing future water resource constraints on thermally based renewable energy resources in California. Applied Energy, 2018, 226, 49-60.	10.1	18
161	A Multi-Model Nonstationary Rainfall-Runoff Modeling Framework: Analysis and Toolbox. Water Resources Management, 2019, 33, 3011-3024.	3.9	18
162	Object-Based Assessment of Satellite Precipitation Products. Remote Sensing, 2016, 8, 547.	4.0	17

Amir AghaKouchak

#	Article	IF	CITATIONS
163	Unraveling the Role of Temperature and Rainfall on Active Fires in the Brazilian Amazon Using a Nonlinear Poisson Model. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 117-128.	3.0	17
164	How much water did Iran lose over the last two decades?. Journal of Hydrology: Regional Studies, 2022, 41, 101095.	2.4	17
165	Effects of Climate Change on Fragility Curves of Earthen Levees Subjected to Extreme Precipitations. , 2017, , .		16
166	A Multivariate Conditional Probability Ratio Framework for the Detection and Attribution of Compound Climate Extremes. Geophysical Research Letters, 2021, 48, e2021GL094361.	4.0	16
167	Satellite-based remote sensing estimation of precipitation for early warning systems. , 2014, , 99-112.		14
168	Quantifying increased fire risk in California in response to different levels of warming and drying. Stochastic Environmental Research and Risk Assessment, 2020, 34, 2023-2031.	4.0	14
169	Approaching 80 years of snow water equivalent information by merging different data streams. Scientific Data, 2020, 7, 333.	5.3	14
170	Changes in the exposure of California's levee-protected critical infrastructure to flooding hazard in a warming climate. Environmental Research Letters, 2020, 15, 064032.	5.2	14
171	Advancing Precipitation Estimation, Prediction, and Impact Studies. Bulletin of the American Meteorological Society, 2020, 101, E1584-E1592.	3.3	14
172	Probabilistic modeling of crop-yield loss risk under drought: a spatial showcase for sub-Saharan Africa. Environmental Research Letters, 2022, 17, 024028.	5.2	14
173	Methods of Tail Dependence Estimation. Water Science and Technology Library, 2013, , 163-179.	0.3	12
174	Translating Uncertain Sea Level Projections Into Infrastructure Impacts Using a Bayesian Framework. Geophysical Research Letters, 2017, 44, 11,914.	4.0	12
175	Empirical Bayes estimation for the conditional extreme value model. Stat, 2014, 3, 391-406.	0.4	11
176	Exploring Trends through "RainSphereâ€: Research data transformed into public knowledge. Bulletin of the American Meteorological Society, 2017, 98, 653-658.	3.3	11
177	Classification of mechanisms, climatic context, areal scaling, and synchronization of floods: the hydroclimatology of floods in the Upper ParanÃ _i River basin, Brazil. Earth System Dynamics, 2017, 8, 1071-1091.	7.1	11
178	Probabilistic hazard assessment of contaminated sediment in rivers. Science of the Total Environment, 2020, 703, 134875.	8.0	11
179	Preparing for proactive dam removal decisions. Science, 2020, 369, 150-150.	12.6	11
180	When Environmental Forces Collide. Eos, 2018, 99, .	0.1	11

#	Article	IF	CITATIONS
181	A methodology for deriving ensemble response from multimodel simulations. Journal of Hydrology, 2015, 522, 49-57.	5.4	10
182	The hydrogeochemistry of shallow groundwater from Lut Desert, Iran: The hottest place on Earth. Journal of Arid Environments, 2020, 178, 104143.	2.4	10
183	A largeâ€scale methane model by incorporating the surface water transport. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1657-1674.	3.0	9
184	Addressing Pluvial Flash Flooding through Community-Based Collaborative Research in Tijuana, Mexico. Water (Switzerland), 2020, 12, 1257.	2.7	9
185	The adaptive benefits of agricultural water markets in California. Environmental Research Letters, 2021, 16, 044036.	5.2	9
186	Extreme heat events heighten soil respiration. Scientific Reports, 2021, 11, 6632.	3.3	9
187	A dataset on human perception of and response to wildfire smoke. Scientific Data, 2019, 6, 229.	5.3	8
188	Integrated data could augment resilience. Science, 2019, 363, 134-134.	12.6	8
189	Are we ready for more dam removals in the United States?. Environmental Research: Infrastructure and Sustainability, 2021, 1, 013001.	2.3	8
190	Anthropogenic influence on the changing risk of heat waves over India. Scientific Reports, 2022, 12, 3337.	3.3	8
191	Intensified Likelihood of Concurrent Warm and Dry Months Attributed to Anthropogenic Climate Change. Water Resources Research, 2022, 58, .	4.2	8
192	A Model Tree Generator (MTG) Framework for Simulating Hydrologic Systems: Application to Reservoir Routing. Water (Switzerland), 2020, 12, 2373.	2.7	7
193	Effect of Compound Flooding on Performance of Earthen Levees. , 2020, , .		7
194	Open Science: Open Data, Open Models, …and Open Publications?. Water Resources Research, 2021, 57, e2020WR029480.	4.2	7
195	Reply to: A critical examination of a newly proposed interhemispheric teleconnection to Southwestern US winter precipitation. Nature Communications, 2019, 10, 2918.	12.8	6
196	Intense agricultural irrigation induced contrasting precipitation changes in Saudi Arabia. Environmental Research Letters, 2021, 16, 064049.	5.2	6
197	Toward a Drought Cyberinfrastructure System. Eos, 2014, 95, 182-183.	0.1	5
198	Natural Disasters Are Prejudiced Against Disadvantaged and Vulnerable Populations: The Lack of Publicly Available Healthâ€Related Data Hinders Research at the Cusp of the Global Climate Crisis. GeoHealth, 2020, 4, e2019GH000219.	4.0	5

Amir AghaKouchak

#	Article	lF	CITATIONS
199	Probabilistic Assessment of Extreme Heat Stress on Indian Wheat Yields Under Climate Change. Geophysical Research Letters, 2021, 48, e2021GL094702.	4.0	5
200	Precipitation variability over India during the 20th and 21st centuries: investigating natural and anthropogenic drivers. Climatic Change, 2022, 172, .	3.6	5
201	Analyzing Highâ€Frequency Soil Respiration Using a Probabilistic Model in a Semiarid, Mediterranean Climate. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 509-520.	3.0	4
202	Performance Degradation of Levee-Protected Electric Power Network Due to Flooding in a Changing Climate. IEEE Transactions on Power Systems, 2022, 37, 4651-4660.	6.5	4
203	Hotspots of predictability: Identifying regions of high precipitation predictability at seasonal timescales from limited time series observations. Water Resources Research, 0, , .	4.2	4
204	Methods and data sources for spatial prediction of rainfall. Geophysical Monograph Series, 2010, , 189-214.	0.1	3
205	The Potential of Precipitation Remote Sensing for Water Resources Vulnerability Assessment in Arid Southwestern United States. , 2013, , 141-149.		3
206	Monitoring global precipitation using satellites. SPIE Newsroom, 0, , .	0.1	3
207	Advancements in Satellite Remote Sensing for Drought Monitoring. Drought and Water Crises, 2017, , 225-258.	0.1	3
208	Geoscientists, Who Have Documented the Rapid and Accelerating Climate Crisis for Decades, Are Now Pleading for Immediate Collective Action. Geophysical Research Letters, 2021, 48, e2021GL096644.	4.0	3
209	Increasing cloud water resource in a warming world. Environmental Research Letters, 2021, 16, 124067.	5.2	3
210	Discrepancies in changes in precipitation characteristics over the contiguous United States based on six daily gridded precipitation datasets. Weather and Climate Extremes, 2022, 36, 100433.	4.1	3
211	An Effective Trend Surface Fitting Framework for Spatial Analysis of Extreme Events. Geophysical Research Letters, 0, , .	4.0	3
212	Multi-Sensor Remote Sensing of Drought from Space. Springer Remote Sensing/photogrammetry, 2017, , 219-247.	0.4	2
213	Enabling incremental adaptation in disadvantaged communities: polycentric governance with a focus on non-financial capital. Climate Policy, 2021, 21, 396-405.	5.1	2
214	Integrating Climatic and Physical Information in a Bayesian Hierarchical Model of Extreme Daily Precipitation. Water (Switzerland), 2020, 12, 2211.	2.7	1
215	Co-development of coastal flood models: Making the leap from expert analysis to decision support. , 2016, , 3-3.		1
216	Ultimate Strength Analysis of Jacket Type Offshore Platforms Due to Wave, Current and Wind Loading. , 2008, , .		0

#	Article	IF	CITATIONS
217	Thank you to Earth's Future Reviewers in 2018. Earth's Future, 2019, 7, 584-586.	6.3	0
218	Thank You Earth's Future Reviewers in 2019. Earth's Future, 2020, 8, e2020EF001536.	6.3	0
219	A Resiliency Study of Electric Power Network to Flooding in a Levee-Protected Area under Climate Change. , 2021, , .		0
220	Framework for Adaptive Design of Infrastructure under a Changing Climate. , 2021, , .		0
221	Adaptive Infrastructure To Mitigate Future Climate Risk: Building Upon Our Geotechnical Engineering Heritage. Geo-strata, 2020, 24, 28-35.	0.1	0
222	Thank You to Our 2021 Reviewers. Earth's Future, 2022, 10, .	6.3	0