
Sohi Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9426354/publications.pdf Version: 2024-02-01

SOUL KANG

#	Article	IF	CITATIONS
1	Trimethyltin-induced hippocampal neurodegeneration: A mechanism-based review. Brain Research Bulletin, 2016, 125, 187-199.	3.0	54
2	Cranial irradiation regulates CREB-BDNF signaling and variant BDNF transcript levels in the mouse hippocampus. Neurobiology of Learning and Memory, 2015, 121, 12-19.	1.9	48
3	Brain-derived neurotropic factor and GABAergic transmission in neurodegeneration and neuroregeneration. Neural Regeneration Research, 2017, 12, 1733.	3.0	36
4	Involvement of BDNF/ERK signaling in spontaneous recovery from trimethyltin-induced hippocampal neurotoxicity in mice. Brain Research Bulletin, 2016, 121, 48-58.	3.0	34
5	Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2022, 23, 3349.	4.1	34
6	Chronic Treatment with Combined Chemotherapeutic Agents Affects Hippocampal Micromorphometry and Function in Mice, Independently of Neuroinflammation. Experimental Neurobiology, 2018, 27, 419-436.	1.6	23
7	Deficiency of sterol regulatory elementâ€binding proteinâ€1c induces schizophreniaâ€like behavior in mice. Genes, Brain and Behavior, 2019, 18, e12540.	2.2	22
8	Developmental and degenerative modulation of brainâ€derived neurotrophic factor transcript variants in the mouse hippocampus. International Journal of Developmental Neuroscience, 2014, 38, 68-73.	1.6	20
9	Developmental and degenerative modulation of GABAergic transmission in the mouse hippocampus. International Journal of Developmental Neuroscience, 2015, 47, 320-332.	1.6	16
10	Regulator of G-Protein Signaling 4 (RGS4) Controls Morphine Reward by Glutamate Receptor Activation in the Nucleus Accumbens of Mouse Brain. Molecules and Cells, 2018, 41, 454-464.	2.6	12
11	Possible involvement of hippocampal immediate–early genes in contextual fear memory deficit induced by cranial irradiation. Neurobiology of Learning and Memory, 2016, 133, 19-29.	1.9	10
12	Changes in epigenetic markers, DNMT1 and HDAC1/2, in the adult mouse hippocampus after cranial irradiation. Neuroscience Letters, 2017, 657, 113-119.	2.1	8
13	Enhanced expression of immediate–early genes in mouse hippocampus after trimethyltin treatment. Acta Histochemica, 2016, 118, 679-684.	1.8	6
14	Melatonin alters neuronal architecture and increases cysteineâ€rich protein 1 signaling in the male mouse hippocampus. Journal of Neuroscience Research, 2020, 98, 2333-2348.	2.9	6
15	Protective Effects of Scolopendra Water Extract on Trimethyltin-Induced Hippocampal Neurodegeneration and Seizures in Mice. Brain Sciences, 2019, 9, 369.	2.3	3
16	N-[2-(4-Acetyl-1-Piperazinyl)Phenyl]-2-(3-Methylphenoxy)Acetamide (NAPMA) Inhibits Osteoclast Differentiation and Protects against Ovariectomy-Induced Osteoporosis. Molecules, 2020, 25, 4855.	3.8	2