Robert Dawson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9426294/robert-dawson-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

37 papers	5,213	26	43
	citations	h-index	g-index
43	5,691 ext. citations	10.8	5.85
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
37	A Pressure Swing Approach to Selective CO Sequestration Using Functionalized Hypercrosslinked Polymers. <i>Materials</i> , 2021 , 14,	3.5	1
36	Efficient and Tunable White-Light Emission Using a Dispersible Porous Polymer. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e2000176	4.8	1
35	Development of a Combined Leaching and Ion-Exchange System for Valorisation of Spent Potlining Waste. <i>Waste and Biomass Valorization</i> , 2020 , 11, 5467-5481	3.2	2
34	Porous Silica-Pillared MXenes with Controllable Interlayer Distances for Long-Life Na-Ion Batteries. <i>Langmuir</i> , 2020 , 36, 4370-4382	4	18
33	Calcium-loaded hydrophilic hypercrosslinked polymers for extremely high defluoridation capacity via multiple uptake mechanisms. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7130-7144	13	9
32	Acid Functionalized Conjugated Microporous Polymers as a Reusable Catalyst for Biodiesel Production. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 3908-3915	4.3	12
31	Single metal isotherm study of the ion exchange removal of Cu(II), Fe(II), Pb(II) and Zn(II) from synthetic acetic acid leachate. <i>Chemical Engineering Journal</i> , 2020 , 394, 124862	14.7	27
30	Synthesis of porous polymer-based metalorganic frameworks monolithic hybrid composite for hydrogen storage application. <i>Journal of Materials Science</i> , 2019 , 54, 7078-7086	4.3	16
29	Selective Environmental Remediation of Strontium and Cesium Using Sulfonated Hyper-Cross-Linked Polymers (SHCPs). <i>ACS Applied Materials & Description of Strontium and Cesium Using Sulfonated Sulfonated Strong Sulfonated Sulfonated Strong Sulfonated Sul</i>	9.5	40
28	Dispersible microporous diblock copolymer nanoparticles via polymerisation-induced self-assembly. <i>Polymer Chemistry</i> , 2019 , 10, 3879-3886	4.9	6
27	Ion exchange removal of Cu(II), Fe(II), Pb(II) and Zn(II) from acid extracted sewage sludge - Resin screening in weak acid media. <i>Water Research</i> , 2019 , 158, 257-267	12.5	59
26	Towards the implementation of an ion-exchange system for recovery of fluoride commodity chemicals. Kinetic and dynamic studies. <i>Chemical Engineering Journal</i> , 2019 , 367, 149-159	14.7	19
25	Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. <i>Journal of Materials Science</i> , 2017 , 52, 3862-3875	4.3	39
24	Trends and challenges for microporous polymers. <i>Chemical Society Reviews</i> , 2017 , 46, 3302-3321	58.5	292
23	Highly selective COvs. N adsorption in the cavity of a molecular coordination cage. <i>Chemical Communications</i> , 2017 , 53, 4398-4401	5.8	16
22	Dry bases[]carbon dioxide capture using alkaline dry water. <i>Energy and Environmental Science</i> , 2014 , 7, 1786-1791	35.4	36
21	Network formation mechanisms in conjugated microporous polymers. <i>Polymer Chemistry</i> , 2014 , 5, 6325	- 6 3333	46

(2010-2014)

20	Microporous Thioxanthone Polymers as Heterogeneous Photoinitiators for Visible Light Induced Free Radical and Cationic Polymerizations. <i>Macromolecules</i> , 2014 , 47, 4607-4614	5.5	99
19	Cationic microporous polymer networks by polymerisation of weakly coordinating cations with CO2-storage ability. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11825-11829	13	64
18	Swellable, water- and acid-tolerant polymer sponges for chemoselective carbon dioxide capture. Journal of the American Chemical Society, 2014 , 136, 9028-35	16.4	175
17	Post-synthetic modification of conjugated microporous polymers. <i>Polymer</i> , 2014 , 55, 321-325	3.9	73
16	Low band-gap benzothiadiazole conjugated microporous polymers. <i>Polymer Chemistry</i> , 2013 , 4, 5585	4.9	53
15	Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. <i>Polymer International</i> , 2013 , 62, 345-352	3.3	245
14	Nanoporous organic polymer networks. <i>Progress in Polymer Science</i> , 2012 , 37, 530-563	29.6	941
13	Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine. <i>Polymer Chemistry</i> , 2012 , 3, 928	4.9	168
12	Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10741-4	16.4	230
11	Materials challenges for the development of solid sorbents for post-combustion carbon capture. Journal of Materials Chemistry, 2012 , 22, 2815-2823		224
10	Branching out with aminals: microporous organic polymers from difunctional monomers. <i>Polymer Chemistry</i> , 2012 , 3, 533-537	4.9	82
9	Step Change Adsorbents and Processes for CO2 Capture STEPCAP 2012, 30-37		O
8	Microporous copolymers for increased gas selectivity. <i>Polymer Chemistry</i> , 2012 , 3, 2034	4.9	125
7	Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. <i>Advanced Materials</i> , 2012 , 24, 2357-61	24	504
6	Chemical tuning of CO2 sorption in robust nanoporous organic polymers. <i>Chemical Science</i> , 2011 , 2, 11	739.4	492
5	Selective gas sorption in a [2+3] 'propeller' cage crystal. <i>Chemical Communications</i> , 2011 , 47, 8919-21	5.8	56
4	Microporous organic polymers for carbon dioxide capture. <i>Energy and Environmental Science</i> , 2011 , 4, 4239	35.4	497
3	High Surface Area Conjugated Microporous Polymers: The Importance of Reaction Solvent Choice. <i>Macromolecules</i> , 2010 , 43, 8524-8530	5.5	178

2 Functionalized Conjugated Microporous Polymers. *Macromolecules*, **2009**, 42, 8809-8816

5.5 305

Mesoporous Poly(phenylenevinylene) Networks. *Macromolecules*, **2008**, 41, 1591-1593

5.5 60