Robert Dawson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9426294/publications.pdf

Version: 2024-02-01

39 papers 6,161 citations

201385

27

h-index

329751 37 g-index

43 all docs

43
docs citations

43 times ranked

5555 citing authors

#	Article	IF	Citations
1	Nanoporous organic polymer networks. Progress in Polymer Science, 2012, 37, 530-563.	11.8	1,029
2	Porous, Fluorescent, Covalent Triazineâ€Based Frameworks Via Roomâ€Temperature and Microwaveâ€Assisted Synthesis. Advanced Materials, 2012, 24, 2357-2361.	11.1	636
3	Microporous organic polymers for carbon dioxide capture. Energy and Environmental Science, 2011, 4, 4239.	15.6	553
4	Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chemical Science, 2011, 2, 1173.	3.7	532
5	Trends and challenges for microporous polymers. Chemical Society Reviews, 2017, 46, 3302-3321.	18.7	386
6	Functionalized Conjugated Microporous Polymers. Macromolecules, 2009, 42, 8809-8816.	2.2	352
7	Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. Polymer International, 2013, 62, 345-352.	1.6	267
8	Impact of Water Coadsorption for Carbon Dioxide Capture in Microporous Polymer Sorbents. Journal of the American Chemical Society, 2012, 134, 10741-10744.	6.6	259
9	Materials challenges for the development of solid sorbents for post-combustion carbon capture. Journal of Materials Chemistry, 2012, 22, 2815-2823.	6.7	255
10	Swellable, Water- and Acid-Tolerant Polymer Sponges for Chemoselective Carbon Dioxide Capture. Journal of the American Chemical Society, 2014, 136, 9028-9035.	6.6	201
11	High Surface Area Conjugated Microporous Polymers: The Importance of Reaction Solvent Choice. Macromolecules, 2010, 43, 8524-8530.	2.2	195
12	Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine. Polymer Chemistry, 2012, 3, 928.	1.9	191
13	Microporous copolymers for increased gas selectivity. Polymer Chemistry, 2012, 3, 2034.	1.9	140
14	lon exchange removal of Cu(II), Fe(II), Pb(II) and Zn(II) from acid extracted sewage sludge – Resin screening in weak acid media. Water Research, 2019, 158, 257-267.	5.3	116
15	Microporous Thioxanthone Polymers as Heterogeneous Photoinitiators for Visible Light Induced Free Radical and Cationic Polymerizations. Macromolecules, 2014, 47, 4607-4614.	2.2	109
16	Post-synthetic modification of conjugated microporous polymers. Polymer, 2014, 55, 321-325.	1.8	100
17	Branching out with aminals: microporous organic polymers from difunctional monomers. Polymer Chemistry, 2012, 3, 533-537.	1.9	92
18	Cationic microporous polymer networks by polymerisation of weakly coordinating cations with CO ₂ -storage ability. Journal of Materials Chemistry A, 2014, 2, 11825-11829.	5.2	81

#	Article	IF	Citations
19	Selective Environmental Remediation of Strontium and Cesium Using Sulfonated Hyper-Cross-Linked Polymers (SHCPs). ACS Applied Materials & Samp; Interfaces, 2019, 11, 22464-22473.	4.0	76
20	Mesoporous Poly(phenylenevinylene) Networks. Macromolecules, 2008, 41, 1591-1593.	2.2	68
21	Selective gas sorption in a [2+3] â€~propeller' cage crystal. Chemical Communications, 2011, 47, 8919.	2.2	67
22	Low band-gap benzothiadiazole conjugated microporous polymers. Polymer Chemistry, 2013, 4, 5585.	1.9	66
23	Network formation mechanisms in conjugated microporous polymers. Polymer Chemistry, 2014, 5, 6325-6333.	1.9	61
24	Single metal isotherm study of the ion exchange removal of Cu(II), Fe(II), Pb(II) and Zn(II) from synthetic acetic acid leachate. Chemical Engineering Journal, 2020, 394, 124862.	6.6	61
25	Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. Journal of Materials Science, 2017, 52, 3862-3875.	1.7	51
26	†Dry bases': carbon dioxide capture using alkaline dry water. Energy and Environmental Science, 2014, 7, 1786-1791.	15.6	42
27	Towards the implementation of an ion-exchange system for recovery of fluoride commodity chemicals. Kinetic and dynamic studies. Chemical Engineering Journal, 2019, 367, 149-159.	6.6	32
28	Porous Silica-Pillared MXenes with Controllable Interlayer Distances for Long-Life Na-Ion Batteries. Langmuir, 2020, 36, 4370-4382.	1.6	30
29	Highly selective CO ₂ vs. N ₂ adsorption in the cavity of a molecular coordination cage. Chemical Communications, 2017, 53, 4398-4401.	2.2	25
30	Synthesis of porous polymer-based metal–organic frameworks monolithic hybrid composite for hydrogen storage application. Journal of Materials Science, 2019, 54, 7078-7086.	1.7	25
31	Acid Functionalized Conjugated Microporous Polymers as a Reusable Catalyst for Biodiesel Production. ACS Applied Polymer Materials, 2020, 2, 3908-3915.	2.0	18
32	Calcium-loaded hydrophilic hypercrosslinked polymers for extremely high defluoridation capacity <i>via</i> multiple uptake mechanisms. Journal of Materials Chemistry A, 2020, 8, 7130-7144.	5.2	16
33	Dispersible microporous diblock copolymer nanoparticles <i>via</i> polymerisation-induced self-assembly. Polymer Chemistry, 2019, 10, 3879-3886.	1.9	7
34	Development of a Combined Leaching and Ion-Exchange System for Valorisation of Spent Potlining Waste. Waste and Biomass Valorization, 2020, 11, 5467-5481.	1.8	7
35	Chapter 7. Conjugated Microporous Polymers. Monographs in Supramolecular Chemistry, 2015, , 155-185.	0.2	4
36	Step Change Adsorbents and Processes for CO2 Capture "STEPCAP. , 2012, , 30-37.		3

#	Article	IF	CITATIONS
37	A Pressure Swing Approach to Selective CO2 Sequestration Using Functionalized Hypercrosslinked Polymers. Materials, 2021, 14, 1605.	1.3	3
38	Heterogenisation of a carbonylation catalyst on dispersible microporous polymer nanoparticles. Catalysis Science and Technology, 0, , .	2.1	2
39	Efficient and Tunable Whiteâ€Light Emission Using a Dispersible Porous Polymer. Macromolecular Rapid Communications, 2020, 41, 2000176.	2.0	1