Zhenqian Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9426193/publications.pdf

Version: 2024-02-01

20 papers 1,363 citations

16 h-index 752698 20 g-index

20 all docs

20 docs citations

20 times ranked 1941 citing authors

#	Article	IF	CITATIONS
1	High temperature shockwave stabilized single atoms. Nature Nanotechnology, 2019, 14, 851-857.	31.5	278
2	Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. ACS Nano, 2017, 11, 12337-12345.	14.6	172
3	Allâ€Natural, Degradable, Rolledâ€Up Straws Based on Cellulose Micro―and Nanoâ€Hybrid Fibers. Advanced Functional Materials, 2020, 30, 1910417.	14.9	109
4	Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits. ACS Nano, 2021, 15, 3646-3673.	14.6	108
5	Highly Elastic Hydrated Cellulosic Materials with Durable Compressibility and Tunable Conductivity. ACS Nano, 2020, 14, 16723-16734.	14.6	98
6	Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity. Nano Letters, 2017, 17, 179-185.	9.1	95
7	Strong, Hydrostable, and Degradable Straws Based on Cellulose‣ignin Reinforced Composites. Small, 2021, 17, e2008011.	10.0	81
8	Mechanics Design in Celluloseâ€Enabled Highâ€Performance Functional Materials. Advanced Materials, 2021, 33, e2002504.	21.0	77
9	Fast Growth of Strain-Free AlN on Graphene-Buffered Sapphire. Journal of the American Chemical Society, 2018, 140, 11935-11941.	13.7	75
10	Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports. Nature Communications, 2020, 11 , 6373 .	12.8	65
11	On the influence of junction structures on the mechanical and thermal properties of carbon honeycombs. Carbon, 2017, 119, 278-286.	10.3	56
12	Damage-tolerant 3D-printed ceramics via conformal coating. Science Advances, 2021, 7, .	10.3	32
13	Defects guided wrinkling in graphene on copper substrate. Carbon, 2019, 143, 736-742.	10.3	27
14	Super-stretchable borophene. Europhysics Letters, 2016, 116, 36001.	2.0	22
15	Fabrication of Cellulose–Graphite Foam via Ion Cross-linking and Ambient-Drying. Nano Letters, 2022, 22, 3931-3938.	9.1	21
16	Grain boundary and curvature enhanced lithium adsorption on carbon. Carbon, 2016, 107, 557-563.	10.3	17
17	Mechanics of cellulose nanopaper using a scalable coarse-grained modeling scheme. Cellulose, 2021, 28, 3359-3372.	4.9	13
18	Giant tunability of interlayer friction in graphite via ion intercalation. Extreme Mechanics Letters, 2020, 35, 100616.	4.1	6

#	Article	IF	CITATIONS
19	Mechanics and strain engineering of bulk and monolayer Bi2O2Se. Journal of the Mechanics and Physics of Solids, 2021, 157, 104626.	4.8	6
20	Electronic band structure of carbon honeycombs. Materials Today Physics, 2018, 5, 72-77.	6.0	5