
Åukasz Janczewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9426152/publications.pdf Version: 2024-02-01

ÅNKASZ LANCZENNSKI

#	Article	IF	CITATIONS
1	Novel phosphonate analogs of sulforaphane: Synthesis, inÂvitro and inÂvivo anticancer activity. European Journal of Medicinal Chemistry, 2017, 132, 63-80.	2.6	27
2	Sulforaphane and Its Bifunctional Analogs: Synthesis and Biological Activity. Molecules, 2022, 27, 1750.	1.7	25
3	Direct, Microwaveâ€Assisted Synthesis of Isothiocyanates. European Journal of Organic Chemistry, 2019, 2019, 2528-2532.	1.2	20
4	T3P® – A Benign Desulfurating Reagent in the Synthesis of Isothiocyanates. Synthesis, 2018, 50, 1141-1151.	1.2	14
5	Applying the prodrug strategy to α-phosphonocarboxylate inhibitors of Rab GGTase – synthesis and stability studies. Organic and Biomolecular Chemistry, 2015, 13, 6844-6856.	1.5	10
6	Design, Synthesis, and Evaluation of ωâ€(Isothiocyanato)alkylphosphinates and Phosphine Oxides as Antiproliferative Agents. ChemMedChem, 2018, 13, 105-115.	1.6	10
7	The Anti-Tumoral Potential of Phosphonate Analog of Sulforaphane in Zebrafish Xenograft Model. Cells, 2021, 10, 3219.	1.8	8
8	Microwave-assisted synthesis of dialkyl ï‰ -azidoalkylphosphonates. Synthetic Communications, 2016, 46, 1625-1633.	1.1	7
9	Synthesis of Isothiocyanates Using DMT/NMM/TsOâ^ as a New Desulfurization Reagent. Molecules, 2021, 26, 2740.	1.7	7
10	Synthesis and Hemostatic Activity of New Amide Derivatives. Molecules, 2022, 27, 2271.	1.7	7
11	Microwave-assisted Cannizzaro reaction—Optimisation of reaction conditions. Synthetic Communications, 2019, 49, 3290-3300.	1.1	4
12	Phosphorus-containing isothiocyanate-derived mercapturic acids as a useful alternative for parental isothiocyanates in experimental oncology. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2611-2615.	1.0	3
13	New diaryl ï‰-(isothiocyanato)alkylphosphonates and their mercapturic acids as potential antibacterial agents. Life Sciences, 2019, 219, 264-271.	2.0	3
14	Synthesis of amides and esters containing furan rings under microwave-assisted conditions. Open Chemistry, 2021, 19, 265-280.	1.0	3
15	Investigation of the reaction of (R)-(+)- and (S)-(â^')-α-methylbenzylammonium hypophosphites with benzaldehyde. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 752-757.	0.8	1
16	Nonâ€Aggregating Amylin Fragments as an Inhibitors of the Aggregation Process of Susceptible to Aggregation Fragments 18–22, 23–27, and 33–37 of Hormone. Chemistry and Biodiversity, 2021, 18, e2100034.	1.0	1