Heraldo L Vasconcelos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/942613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecosystem Decay of Amazonian Forest Fragments: a 22-Year Investigation. Conservation Biology, 2002, 16, 605-618.	2.4	1,372
2	The fate of Amazonian forest fragments: A 32-year investigation. Biological Conservation, 2011, 144, 56-67.	1.9	713
3	Matrix habitat and species richness in tropical forest remnants. Biological Conservation, 1999, 91, 223-229.	1.9	645
4	Rainforest fragmentation kills big trees. Nature, 2000, 404, 836-836.	13.7	514
5	Global decomposition experiment shows soil animal impacts on decomposition are climateâ€dependent. Global Change Biology, 2008, 14, 2661-2677.	4.2	385
6	Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Molecular Ecology, 2014, 23, 1268-1283.	2.0	276
7	The biodiversity cost of carbon sequestration in tropical savanna. Science Advances, 2017, 3, e1701284.	4.7	251
8	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333.	3.0	233
9	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1	10,7843	14 rgBT /Over
10	Forest fragmentation in central Amazonia and its effects on litter-dwelling ants. Biological Conservation, 1999, 91, 151-157.	1.9	176
11	Forest loss and fragmentation in the Amazon: implications for wildlife conservation. Oryx, 2000, 34, 39-45.	0.5	147
12	Deforestation in Amazonia. Science, 2004, 304, 1109b-1111b.	6.0	131
13	Title is missing!. Biodiversity and Conservation, 1999, 8, 407-418.	1.2	130
14	Do herbivores exert topâ€down effects in Neotropical savannas? Estimates of biomass consumption by leafâ€cutter ants. Journal of Vegetation Science, 2008, 19, 849-854.	1.1	119
15	<i>GlobalAnts</i> : a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conservation and Diversity, 2017, 10, 5-20.	1.4	119
16	Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants. Journal of Animal Ecology, 2011, 80, 352-360.	1.3	109
17	Responses of ants to selective logging of a central Amazonian forest. Journal of Applied Ecology, 2000, 37, 508-514.	1.9	106
18	Mutualism between Maieta guianensis Aubl., a myrmecophytic melastome, and one of its ant inhabitants: ant protection against insect herbivores. Oecologia, 1991, 87, 295-298.	0.9	101

#	Article	IF	CITATIONS
19	Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Global Change Biology, 2018, 24, e592-e602.	4.2	101
20	Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography, 2006, 29, 442-450.	2.1	97
21	Cheating the cheater: domatia loss minimizes the effects of ant castration in an Amazonian ant-plant. Oecologia, 2002, 133, 200-205.	0.9	96
22	LITTER PRODUCTION AND LITTER NUTRIENT CONCENTRATIONS IN A FRAGMENTED AMAZONIAN LANDSCAPE. , 2004, 14, 884-892.		96
23	Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia, 2005, 144, 456-462.	0.9	92
24	Global diversity in light of climate change: the case of ants. Diversity and Distributions, 2011, 17, 652-662.	1.9	87
25	Dynamics of the Leaf-Litter Arthropod Fauna Following Fire in a Neotropical Woodland Savanna. PLoS ONE, 2009, 4, e7762.	1.1	85
26	Ant diversity in an Amazonian savanna: Relationship with vegetation structure, disturbance by fire, and dominant ants. Austral Ecology, 2008, 33, 221-231.	0.7	83
27	A pest is a pest is a pest? The dilemma of neotropical leaf-cutting ants: Keystone taxa of natural ecosystems. Environmental Management, 1989, 13, 671-675.	1.2	76
28	Forest loss and fragmentation in the Amazon: implications for wildlife conservation. Oryx, 2000, 34, 39.	0.5	75
29	Revisiting the pyrodiversity–biodiversity hypothesis: longâ€ŧerm fire regimes and the structure of ant communities in a <scp>N</scp> eotropical savanna hotspot. Journal of Applied Ecology, 2014, 51, 1661-1668.	1.9	73
30	Leaf-cutting ants and early forest regeneration in central Amazonia: effects of herbivory on tree seedling establishment. Journal of Tropical Ecology, 1997, 13, 357-370.	0.5	72
31	Roads Alter the Colonization Dynamics of a Keystone Herbivore in Neotropical Savannas1. Biotropica, 2006, 38, 661-665.	0.8	72
32	Seed predators limit plant recruitment in Neotropical savannas. Oikos, 2011, 120, 1013-1022.	1.2	72
33	Changes in leafâ€cutting ant populations (Formicidae: Attini) after the clearing of mature forest in Brazilian Amazonia. Studies on Neotropical Fauna and Environment, 1995, 30, 107-113.	0.5	69
34	Patterns of ant species diversity and turnover across 2000 km of Amazonian floodplain forest. Journal of Biogeography, 2010, 37, 432-440.	1.4	67
35	Neotropical savanna ants show a reversed latitudinal gradient of species richness, with climatic drivers reflecting the forest origin of the fauna. Journal of Biogeography, 2018, 45, 248-258.	1.4	67
36	Invertebrate conservation in urban areas: Ants in the Brazilian Cerrado. Landscape and Urban Planning, 2007, 81, 193-199.	3.4	66

#	Article	IF	CITATIONS
37	Habitat diversity enhances ant diversity in a naturally heterogeneous Brazilian landscape. Biodiversity and Conservation, 2012, 21, 797-809.	1.2	66
38	Evaluation of three methods for sampling ground-dwelling Ants in the Brazilian Cerrado. Neotropical Entomology, 2008, 37, 399-405.	0.5	64
39	Mountain Ecosystems as Natural Laboratories for Climate Change Experiments. Frontiers in Forests and Global Change, 2020, 3, .	1.0	63
40	Long-term effects of forest fragmentation on Amazonian ant communities. Journal of Biogeography, 2006, 33, 1348-1356.	1.4	62
41	Effects of Amazonian forest fragmentation on the interaction between plants, insect herbivores, and their natural enemies. Journal of Tropical Ecology, 2008, 24, 57-64.	0.5	62
42	Climate mediates the effects of disturbance on ant assemblage structure. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150418.	1.2	58
43	The effect of habitat fragmentation on communities of mutualists: Amazonian ants and their host plants. Biological Conservation, 2005, 124, 209-216.	1.9	56
44	Contrasting Effects of Fire on Arboreal and Groundâ€Đwelling Ant Communities of a Neotropical Savanna. Biotropica, 2012, 44, 254-261.	0.8	55
45	Ant colonization of Maieta guianensis seedlings, an Amazon ant-plant. Oecologia, 1993, 95, 439-443.	0.9	53
46	Effects of fire disturbance on ant abundance and diversity: a global meta-analysis. Biodiversity and Conservation, 2017, 26, 177-188.	1.2	52
47	Foraging activity of two species of leaf-cutting ants (Atta) in a primary forest of the Central Amazon. Insectes Sociaux, 1990, 37, 131-145.	0.7	51
48	Coâ€occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements. Ecology and Evolution, 2016, 6, 8907-8918.	0.8	51
49	Habitat disturbance selects against both small and large species across varying climates. Ecography, 2018, 41, 1184-1193.	2.1	51
50	The molecular phylogenetics of <i>Trachymyrmex</i> Forel ants and their fungal cultivars provide insights into the origin and coevolutionary history of †higherâ€attine' ant agriculture. Systematic Entomology, 2019, 44, 939-956.	1.7	50
51	Biogeography of mutualistic fungi cultivated by leafcutter ants. Molecular Ecology, 2017, 26, 6921-6937.	2.0	49
52	Interspecific variation in the defensive responses of obligate plant-ants: experimental tests and consequences for herbivory. Oecologia, 2004, 138, 558-565.	0.9	46
53	Leaf nutrient content and host plant selection by leafâ€cutter ants, <i>AttaÂlaevigata</i> , in a Neotropical savanna. Entomologia Experimentalis Et Applicata, 2009, 130, 47-54.	0.7	45
54	The Most Relictual Fungus-Farming Ant Species Cultivates the Most Recently Evolved and Highly Domesticated Fungal Symbiont Species. American Naturalist, 2015, 185, 693-703.	1.0	45

#	Article	IF	CITATIONS
55	A new method based on taxonomic sufficiency to simplify studies on Neotropical ant assemblages. Biological Conservation, 2010, 143, 2832-2839.	1.9	44
56	Influence of Topography on the Distribution of Ground-Dwelling Ants in an Amazonian Forest. Studies on Neotropical Fauna and Environment, 2003, 38, 115-124.	0.5	42
57	No Net Loss of Species Diversity After Prescribed Fires in the Brazilian Savanna. Frontiers in Forests and Global Change, 2020, 3, .	1.0	42
58	Contributions of C. Oecologia, 1999, 119, 91.	0.9	42
59	Influence of Azteca alfari Ants on the Exploitation of Cecropia Trees by a Leaf-Cutting Ant. Biotropica, 1997, 29, 84-92.	0.8	41
60	Relationship between Plant Size and Ant Associates in Two Amazonian Ant-Plants1. Biotropica, 2000, 32, 100-111.	0.8	39
61	Dominance–diversity relationships in ant communities differ with invasion. Global Change Biology, 2018, 24, 4614-4625.	4.2	39
62	Rain-forest fragmentation and the phenology of Amazonian tree communities. Journal of Tropical Ecology, 2003, 19, 343-347.	0.5	37
63	A global database of ant species abundances. Ecology, 2017, 98, 883-884.	1.5	37
64	REVISÃO DOS EFEITOS DO FOGO SOBRE A FAUNA DE FORMAÇÕES SAVÃ,NICAS DO BRASIL. Oecologia Australis, 2011, 15, 365-379.	0.1	37
65	Species Turnover and Vertical Partitioning of Ant Assemblages in the Brazilian Amazon: A Comparison of Forests and Savannas1. Biotropica, 2005, 38, 051207072004005.	0.8	35
66	Understanding what bioindicators are actually indicating: Linking disturbance responses to ecological traits of dung beetles and ants. Ecological Indicators, 2020, 108, 105764.	2.6	35
67	Multi-scale ant diversity in savanna woodlands: an intercontinental comparison. Austral Ecology, 2011, 36, 983-992.	0.7	33
68	The importance of remnants of natural vegetation for maintaining ant diversity in Brazilian agricultural landscapes. Biodiversity and Conservation, 2013, 22, 983-997.	1.2	33
69	Beta diversity of orchid bees in a tropical biodiversity hotspot. Biodiversity and Conservation, 2013, 22, 1647-1661.	1.2	32
70	Extrafloral nectaries have a limited effect on the structure of arboreal ant communities in a Neotropical savanna. Ecology, 2015, 96, 231-240.	1.5	32
71	Cyatta abscondita: Taxonomy, Evolution, and Natural History of a New Fungus-Farming Ant Genus from Brazil. PLoS ONE, 2013, 8, e80498.	1.1	32
72	Hitchhiking behaviour in leaf-cutter ants: An experimental evaluation of three hypotheses. Insectes Sociaux, 2006, 53, 326-332.	0.7	31

#	Article	IF	CITATIONS
73	Comunidade de formigas que nidificam em pequenos galhos da serrapilheira em floresta da Amazônia Central, Brasil. Revista Brasileira De Entomologia, 2002, 46, 115-121.	0.1	30
74	Attack frequency and the tolerance to herbivory of Neotropical savanna trees. Oecologia, 2012, 168, 405-414.	0.9	30
75	Strength of the modular pattern in Amazonian symbiotic ant–plant networks. Arthropod-Plant Interactions, 2013, 7, 455-461.	0.5	30
76	Fire Increases Insect Herbivory in a Neotropical Savanna. Biotropica, 2011, 43, 612-618.	0.8	29
77	<scp>BIOFRAG</scp> – a new database for analyzing <scp>BIO</scp> diversity responses to forest <scp>FRAG</scp> mentation. Ecology and Evolution, 2014, 4, 1524-1537.	0.8	29
78	Biotic drivers of seedling establishment in Neotropical savannas: selective granivory and seedling herbivory by leafâ€cutter ants as an ecological filter. Journal of Ecology, 2017, 105, 132-141.	1.9	29
79	Roads increase population growth rates of a native leafâ€cutter ant in Neotropical savannahs. Journal of Applied Ecology, 2016, 53, 983-992.	1.9	28
80	Geographical and socioeconomic determinants of species discovery trends in a biodiversity hotspot. Biological Conservation, 2018, 220, 237-244.	1.9	28
81	Nesting biology of the fungus growing ants Mycetarotes Emery (Attini, Formicidae). Insectes Sociaux, 2004, 51, 333-338.	0.7	27
82	Resilient Networks of Ant-Plant Mutualists in Amazonian Forest Fragments. PLoS ONE, 2012, 7, e40803.	1.1	27
83	Fire drives the reproductive responses of herbaceous plants in a Neotropical swamp. Plant Ecology, 2013, 214, 1479-1484.	0.7	27
84	Plant Ontogeny as a Conditionality Factor in the Protective Effect of Ants on a Neotropical Tree. Biotropica, 2016, 48, 198-205.	0.8	27
85	The effect of wilting on the selection of leaves by the leafâ€cutting ant <i>Atta laevigata</i> . Entomologia Experimentalis Et Applicata, 1996, 78, 215-220.	0.7	25
86	Contributions of C3 and C4 plants to higher trophic levels in an Amazonian savanna. Oecologia, 1999, 119, 91-96.	0.9	25
87	Longâ€ŧerm persistence of a Neotropical antâ€plant population in the absence of obligate plantâ€ants. Ecology, 2009, 90, 2375-2383.	1.5	25
88	Contrasting Responses to Induction Cues by Ants Inhabiting Maieta guianensis (Melastomataceae). Biotropica, 2003, 35, 295-300.	0.8	24
89	The Potential Role of Scattered Trees for Ant Conservation in an Agriculturally Dominated Neotropical Landscape. Biotropica, 2013, 45, 644-651.	0.8	24
90	Ants and plant size shape the structure of the arthropod community of Hirtella myrmecophila, an Amazonian ant-plant. Ecological Entomology, 2005, 30, 650-656.	1.1	23

#	Article	IF	CITATIONS
91	Canopy and litter ant assemblages share similar climate–species density relationships. Biology Letters, 2010, 6, 769-772.	1.0	23
92	Foraging activity of an Amazonian leaf-cutting ant: responses to changes in the availability of woody plants and to previous plant damage. Oecologia, 1997, 112, 370-378.	0.9	22
93	Estratificação vertical de formigas em cerrado strictu sensu no Parque Estadual da Serra de Caldas Novas, Goiás, Brasil. Iheringia - Serie Zoologia, 2008, 98, 311-316.	0.5	22
94	Effectiveness of two sampling protocols to survey orchid bees (Hymenoptera: Apidae) in the Neotropics. Journal of Insect Conservation, 2014, 18, 197-202.	0.8	22
95	Rediscovery of the enigmatic fungus-farming ant "Mycetosoritis" asper Mayr (Hymenoptera:) Tj ETQq1 1 0.78431 ONE, 2017, 12, e0176498.	1.1 4 rgBT /C	verlock 10 22
96	Distribution of sandflies (Diptera: Phlebotominae) in forest remnants and adjacent matrix habitats in Brazilian Amazonia. Brazilian Journal of Biology, 2003, 63, 401-410.	0.4	20
97	Fuzzy parameters in a partial differential equation model for population dispersal of leaf-cutting ants. Nonlinear Analysis: Real World Applications, 2011, 12, 3397-3412.	0.9	20
98	Searching for Euglossa cyanochlora Moure, 1996 (Hymenoptera: Apidae), one of the rarest bees in the world. Journal of Insect Conservation, 2012, 16, 745-755.	0.8	20
99	Arthropod responses to the experimental isolation of Amazonian forest fragments. Zoologia, 2012, 29, 515-530.	0.5	20
100	Revisiting florivory: an integrative review and global patterns of a neglected interaction. New Phytologist, 2022, 233, 132-144.	3.5	20
101	Contrasting Responses to Induction Cues by Ants Inhabiting Maieta guianensis (Melastomataceae)1. Biotropica, 2003, 35, 295.	0.8	19
102	Recognition of Host Plant Volatiles by <i>Pheidole minutula</i> Mayr (Myrmicinae), an Amazonian Antâ€Plant Specialist. Biotropica, 2009, 41, 642-646.	0.8	19
103	Asymmetric Dispersal and Colonization Success of Amazonian Plant-Ants Queens. PLoS ONE, 2011, 6, e22937.	1.1	19
104	Amphibians on <scp>A</scp> mazonian <scp>L</scp> andâ€Bridge Islands are Affected More by Area Than Isolation. Biotropica, 2015, 47, 369-376.	0.8	19
105	Nesting Biology and Fungiculture of the Fungus-Growing Ant, <i>Mycetagroicus cerradensis</i> : New Light on the Origin of Higher Attine Agriculture. Journal of Insect Science, 2011, 11, 1-14.	0.6	18
106	Subterranean Pitfall Traps: Is It Worth Including Them in Your Ant Sampling Protocol?. Psyche: Journal of Entomology, 2012, 2012, 1-9.	0.4	18
107	From over to undercompensation: Variable responses to herbivory during ontogeny of a Neotropical monocarpic plant. Biotropica, 2016, 48, 608-617.	0.8	18
108	Congruent spatial patterns of ant and tree diversity in Neotropical savannas. Biodiversity and Conservation, 2019, 28, 1075-1089.	1.2	18

#	Article	IF	CITATIONS
109	Shortâ€ŧerm effects of elevated precipitation and nitrogen on soil fertility and plant growth in a Neotropical savanna. Ecosphere, 2012, 3, 1-20.	1.0	17
110	Discovery and defense define the social foraging strategy of Neotropical arboreal ants. Behavioral Ecology and Sociobiology, 2018, 72, 1.	0.6	17
111	The public perception of animal diversity: what do postage stamps tell us?. Frontiers in Ecology and the Environment, 2013, 11, 9-10.	1.9	16
112	Evaluating sampling sufficiency and the use of surrogates for assessing ant diversity in a Neotropical biodiversity hotspot. Ecological Indicators, 2014, 46, 286-292.	2.6	16
113	Macroecological patterns and correlates of ant–tree interaction networks in Neotropical savannas. Global Ecology and Biogeography, 2019, 28, 1283-1294.	2.7	16
114	The Azteca-Cecropia Association: Are Ants Always Necessary for Their Host Plants?. Biotropica, 2004, 36, 641-646.	0.8	15
115	Patterns of diversity and abundance of fungus-growing ants (Formicidae: Attini) in areas of the Brazilian Cerrado. Revista Brasileira De Zoologia, 2008, 25, 445-450.	0.5	15
116	Mammalia, Estação Ecológica do Panga, a Cerrado protected area in Minas Gerais state, Brazil. Check List, 2010, 6, 668.	0.1	15
117	Fauna in decline: Meek shall inherit. Science, 2014, 345, 1129-1129.	6.0	14
118	Long-term ecology of orchid bees in an urban forest remnant. Apidologie, 2015, 46, 359-368.	0.9	14
119	Seed removal patterns of pioneer trees in an agricultural landscape. Plant Ecology, 2017, 218, 737-748.	0.7	14
120	Cooperative colony founding alters the outcome of interspecific competition between Amazonian plant-ants. Insectes Sociaux, 2009, 56, 341-345.	0.7	13
121	Nest architecture, fungus gardens, queen, males and larvae of the fungus-growing ant Mycetagroicus inflatus Brandão & Mayhé-Nunes. Insectes Sociaux, 2013, 60, 531-542.	0.7	13
122	Effect of mutualist partner identity on plant demography. Ecology, 2014, 95, 3237-3243.	1.5	13
123	Ecosystem engineering in the arboreal realm: heterogeneity of wood-boring beetle cavities and their use by cavity-nesting ants. Oecologia, 2021, 196, 427-439.	0.9	13
124	Leaf-litter decomposition in Amazonian forest fragments. Journal of Tropical Ecology, 2005, 21, 699-702.	0.5	12
125	Interspecific variation in the defensive responses of ant mutualists to plant volatiles. Biological Journal of the Linnean Society, 2008, 94, 241-249.	0.7	12
126	From species to individuals: does the variation in ant–plant networks scale result in structural and functional changes?. Population Ecology, 2018, 60, 309-318.	0.7	12

#	Article	IF	CITATIONS
127	Effects of landâ€use changes on ecosystem services: decrease in ant predation in humanâ€dominated landscapes in central <scp>B</scp> razil. Entomologia Experimentalis Et Applicata, 2017, 162, 302-308.	0.7	11
128	Adaptive foraging of leafâ€cutter ants to spatiotemporal changes in resource availability in Neotropical savannas. Ecological Entomology, 2019, 44, 227-238.	1.1	11
129	Revisiting ecological dominance in arboreal ants: how dominant usage of nesting resources shapes community assembly. Oecologia, 2020, 194, 151-163.	0.9	11
130	The effects of high-severity fires on the arboreal ant community of a Neotropical savanna. Oecologia, 2021, 196, 951-961.	0.9	11
131	Levels of leaf Herbivory in Amazonian trees from different stages In forest regeneration. Acta Amazonica, 1999, 29, 615-623.	0.3	11
132	Historical biogeography shapes functional ecology: Inter ontinental contrasts in responses of savanna ant communities to stress and disturbance. Journal of Biogeography, 2022, 49, 590-599.	1.4	11
133	Developmental changes in factors limiting colony survival and growth of the leafâ€cutter ant <i>Atta laevigata</i> . Ecography, 2010, 33, 538-544.	2.1	10
134	The Program for Biodiversity Research in Brazil: The role of regional networks for biodiversity knowledge, dissemination, and conservation. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20201604.	0.3	9
135	How much leaf area do insects eat? A data set of insect herbivory sampled globally with a standardized protocol. Ecology, 2021, 102, e03301.	1.5	9
136	Do an ecosystem engineer and environmental gradient act independently or in concert to shape juvenile plant communities? Tests with the leaf-cutter ant <i>Atta laevigata</i> in a Neotropical savanna. PeerJ, 2018, 6, e5612.	0.9	9
137	ATLANTIC ANTS: a data set of ants in Atlantic Forests of South America. Ecology, 2022, 103, e03580.	1.5	9
138	Plant palatability to leaf-cutter ants (Atta laevigata) and litter decomposability in a Neotropical woodland savanna. Austral Ecology, 2011, 36, 504-510.	0.7	8
139	Biology of the relict fungus-farming ant Apterostigma megacephala Lattke, including descriptions of the male, gyne, and larva. Insectes Sociaux, 2017, 64, 329-346.	0.7	8
140	Frag SAD : A database of diversity and species abundance distributions from habitat fragments. Ecology, 2019, 100, e02861.	1.5	8
141	Severe fires alter the outcome of the mutualism between ants and a Neotropical savanna tree. Biological Journal of the Linnean Society, 2020, 131, 476-486.	0.7	7
142	Multiâ€population seedling and soil transplants show possible responses of a common tropical montane tree species (<i>Weinmannia bangii</i>) to climate change. Journal of Ecology, 2021, 109, 62-73.	1.9	7
143	Assessing the fire resilience of the savanna tree component through a functional approach. Acta Oecologica, 2021, 111, 103728.	0.5	7
144	Active modification of cavity nestâ€entrances is a common strategy in arboreal ants. Biotropica, 2021, 53, 857-867.	0.8	6

#	Article	IF	CITATIONS
145	Dung beetle functions in tropical planted pastures were barely explained by management variables and not at all by community metrics. Ecological Indicators, 2021, 125, 107598.	2.6	6
146	Relationship between Plant Size and Ant Associates in Two Amazonian Ant-Plants1. Biotropica, 2000, 32, 100.	0.8	5
147	Geographic variation in the protective effects of ants and trichomes in a Neotropical ant–plant. Plant Ecology, 2015, 216, 1083-1090.	0.7	5
148	Annual litter production in a Brazilian Cerrado woodland savanna. Southern Forests, 2020, 82, 65-69.	0.2	5
149	Inter-generic and inter-habitat variation in the demand for sodium by Neotropical ants. Insectes Sociaux, 2015, 62, 133-140.	0.7	4
150	Why do <i>Pheidole oxyops</i> (Forel, 1908) ants place feathers around their nests?. Ecological Entomology, 2019, 44, 451-456.	1.1	4
151	Variação espaço-temporal na atividade forrageira da Saúva (Atta laevigata). Acta Amazonica, 2002, 32, 141-154.	0.3	3
152	Functional richness shows spatial scale dependency in <i>Pheidole</i> ant assemblages from Neotropical savannas. Ecology and Evolution, 2019, 9, 11734-11741.	0.8	3
153	Trophic ecology of the arboreal and ground ant communities in forests and savannas of central Brazil. Ecological Entomology, 2021, 46, 936-945.	1.1	3
154	New distribution records of the savanna specialist fungus-farming ant Cyatta Sosa-Calvo et al. (Hymenoptera: Formicidae: Myrmicinae). Biodiversity Data Journal, 2016, 4, e10673.	0.4	3
155	Ant diversity in Neotropical savannas: Hierarchical processes acting at multiple spatial scales. Journal of Animal Ecology, 2020, 89, 412-422.	1.3	2
156	Effects of experimental nitrogen enrichment on soil properties and litter decomposition in a Neotropical savanna. Austral Ecology, 2020, 45, 1093-1102.	0.7	2
157	Extranuptial nectaries in flowers: ants increase the reproductive success of the antâ€plant Miconia tococa (Melastomataceae). Plant Biology, 2020, 22, 917-923.	1.8	2
158	Patterns of Ant Diversity in the Natural Grasslands of Southern Brazil. Neotropical Entomology, 2021, 50, 725-735.	0.5	2
159	New Records and Potential Distribution of the ant Gracilidris pombero Wild & Cuezzo (Hymenoptera: Formicidae). Sociobiology, 2018, 65, 375.	0.2	1
160	The Azteca–Cecropia Association: Are Ants Always Necessary for Their Host Plants?1. Biotropica, 2004, 36, 641.	0.8	0
161	2007 Biotropica Award for Excellence in Tropical Biology and Conservation. Biotropica, 2007, 39, 668-669.	0.8	0
162	Ecology of Pheidole oxyops Forel, 1908, a dominant ant in neotropical savannas. Insectes Sociaux, 2021, 68, 69-75.	0.7	0