
Giulia Campostrini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9425831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell, 2020, 26, 862-879.e11.	5.2	337
2	Embryonic Stem Cell–Derived CD166 ⁺ Precursors Develop Into Fully Functional Sinoatrial-Like Cells. Circulation Research, 2013, 113, 389-398.	2.0	54
3	Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells. Nature Protocols, 2021, 16, 2213-2256.	5.5	53
4	Human iPSC modelling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes. Cardiovascular Research, 2020, 116, 1147-1160.	1.8	50
5	A novel de novo HCN1 loss-of-function mutation in genetic generalized epilepsy causing increased neuronal excitability. Neurobiology of Disease, 2018, 118, 55-63.	2.1	47
6	Human derived cardiomyocytes: A decade of knowledge after the discovery of induced pluripotent stem cells. Developmental Dynamics, 2016, 245, 1145-1158.	0.8	42
7	Cardiac Tissues From Stem Cells. Circulation Research, 2021, 128, 775-801.	2.0	42
8	A Loss-of-Function HCN4 Mutation Associated With Familial Benign Myoclonic Epilepsy in Infancy Causes Increased Neuronal Excitability. Frontiers in Molecular Neuroscience, 2018, 11, 269.	1.4	25
9	The expression of the rare caveolin-3 variant T78M alters cardiac ion channels function and membrane excitability. Cardiovascular Research, 2017, 113, 1256-1265.	1.8	19
10	A detailed characterization of the hyperpolarization-activated "funny―current (If) in human-induced pluripotent stem cell (iPSC)–derived cardiomyocytes with pacemaker activity. Pflugers Archiv European Journal of Physiology, 2021, 473, 1009-1021.	1.3	18
11	Preferential myofibroblast differentiation of cardiac mesenchymal progenitor cells in the presence of atrial fibrillation. Translational Research, 2018, 192, 54-67.	2.2	16
12	Higher cardiogenic potential of iPSCs derived from cardiac versus skin stromal cells. Frontiers in Bioscience - Landmark, 2016, 21, 719-743.	3.0	13
13	Maturation of hiPSC-derived cardiomyocytes promotes adult alternative splicing of SCN5A and reveals changes in sodium current associated with cardiac arrhythmia. Cardiovascular Research, 2023, 119, 167-182.	1.8	13
14	Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways. Endocrine, 2016, 53, 681-688.	1.1	7
15	Targeting the Kv11.1 (hERG) channel with allosteric modulators. Synthesis and biological evaluation of three novel series of LUF7346 derivatives. European Journal of Medicinal Chemistry, 2021, 212, 113033.	2.6	6
16	Mineralocorticoid receptor and embryonic stem cell models: Molecular insights and pathophysiological relevance. Molecular and Cellular Endocrinology, 2012, 350, 216-222.	1.6	2
17	A Simplified Geriatric Assessment (sGA) Can Identify Older Patients with Relapse/Refractory (R/R) Aggressive Lymphoma Suitable for Autologous Stem Cell Transplantation (ASCT): Final Results of Recanz Multicentre Prospective Phase 2 Study By the Fondazione Italiana Linfomi (FIL). Blood, 2021, 138, 2496-2496.	0.6	1