Billy Sperlich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9425040/publications.pdf

Version: 2024-02-01

18	587	13	17
papers	citations	h-index	g-index
21	21	21	746
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comparison of Non-Invasive Individual Monitoring of the Training and Health of Athletes with Commercially Available Wearable Technologies. Frontiers in Physiology, 2016, 7, 71.	2.8	110
2	Recommendations for Assessment of the Reliability, Sensitivity, and Validity of Data Provided by Wearable Sensors Designed for Monitoring Physical Activity. JMIR MHealth and UHealth, 2018, 6, e102.	3.7	92
3	Wearable, yes, but able…?: it is time for evidence-based marketing claims!. British Journal of Sports Medicine, 2017, 51, 1240-1240.	6.7	58
4	Wrist-Worn Wearables for Monitoring Heart Rate and Energy Expenditure While Sitting or Performing Light-to-Vigorous Physical Activity: Validation Study. JMIR MHealth and UHealth, 2020, 8, e16716.	3.7	58
5	Integrated Framework of Load Monitoring by a Combination of Smartphone Applications, Wearables and Point-of-Care Testing Provides Feedback that Allows Individual Responsive Adjustments to Activities of Daily Living. Sensors, 2018, 18, 1632.	3.8	55
6	Instant Biofeedback Provided by Wearable Sensor Technology Can Help to Optimize Exercise and Prevent Injury and Overuse. Frontiers in Physiology, 2017, 8, 167.	2.8	28
7	Behavior Change Techniques in Wrist-Worn Wearables to Promote Physical Activity: Content Analysis. JMIR MHealth and UHealth, 2020, 8, e20820.	3.7	28
8	The SpeedCourt: Reliability, Usefulness, and Validity of a New Method to Determine Change-of-Direction Speed. International Journal of Sports Physiology and Performance, 2016, 11, 130-134.	2.3	27
9	Necessary Steps to Accelerate the Integration of Wearable Sensors Into Recreation and Competitive Sports. Current Sports Medicine Reports, 2018, 17, 178-182.	1.2	27
10	Mesocycles with Different Training Intensity Distribution in Recreational Runners. Medicine and Science in Sports and Exercise, 2018, 50, 1641-1648.	0.4	26
11	Editorial: Wearable Sensor Technology for Monitoring Training Load and Health in the Athletic Population. Frontiers in Physiology, 2019, 10, 1520.	2.8	17
12	Predefined vs dataâ€guided training prescription based on autonomic nervous system variation: A systematic review. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 2291-2304.	2.9	17
13	Virtual Training of Endurance Cycling – A Summary of Strengths, Weaknesses, Opportunities and Threats. Frontiers in Sports and Active Living, 2021, 3, 631101.	1.8	17
14	Monitoring and adapting endurance training on the basis of heart rate variability monitored by wearable technologies: A systematic review with meta-analysis. Journal of Science and Medicine in Sport, 2021, 24, 1180-1192.	1.3	17
15	Assessment of Peak Oxygen Uptake with a Smartwatch and its Usefulness for Training of Runners. International Journal of Sports Medicine, 2022, 43, 642-647.	1.7	7
16	Moving Together While Staying Apart: Practical Recommendations for 24-Hour Home-Based Movement Behaviours for Those With Cardiovascular Disease. CJC Open, 2021, 3, 1495-1504.	1.5	2
17	Proof-of-concept and concurrent validity of a prototype headset to assess peak oxygen uptake without a face mask. BMC Research Notes, 2022, 15, 4.	1.4	1
18	Type and intensity distribution of structured and incidental lifestyle physical activity of students and office workers: a retrospective content analysis. BMC Public Health, 2022, 22, 634.	2.9	0