Jeremy J Kodanko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/94239/publications.pdf

Version: 2024-02-01

304743 377865 1,185 39 22 34 citations h-index g-index papers 39 39 39 1117 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Photocytotoxicity and photoinduced phosphine ligand exchange in a Ru(<scp>ii</scp>) polypyridyl complex. Chemical Science, 2022, 13, 1933-1945.	7.4	21
2	Metalloimmunotherapy with Rhodium and Ruthenium Complexes: Targeting Tumorâ€Associated Macrophages. Chemistry - A European Journal, 2022, 28, .	3.3	13
3	Unlocking the Potential of Ru(II) Dualâ€action Compounds with the Power of the Heavyâ€atom Effect ^{â€} . Photochemistry and Photobiology, 2022, 98, 378-388.	2.5	7
4	Ruthenium complexes for photoactivated dual activity: Drug delivery and singlet oxygen generation. Advances in Inorganic Chemistry, 2022, , .	1.0	1
5	Photosensitive Ru(II) Complexes as Inhibitors of the Major Human Drug Metabolizing Enzyme CYP3A4. Journal of the American Chemical Society, 2021, 143, 9191-9205.	13.7	37
6	Trifluoromethyl substitution enhances photoinduced activity against breast cancer cells but reduces ligand exchange in Ru(<scp>ii</scp>) complex. Chemical Science, 2021, 12, 12056-12067.	7.4	17
7	Ru(II)-Based Acetylacetonate Complexes Induce Apoptosis Selectively in Cancer Cells. Inorganic Chemistry, 2021, 60, 18964-18974.	4.0	10
8	Dual-Action Ru(II) Complexes with Bulky π-Expansive Ligands: Phototoxicity without DNA Intercalation. Inorganic Chemistry, 2020, 59, 3919-3933.	4.0	33
9	BODIPY-Caged Photoactivated Inhibitors of Cathepsin B Flip the Light Switch on Cancer Cell Apoptosis. ACS Chemical Biology, 2019, 14, 2833-2840.	3.4	27
10	DFT Investigation of Ligand Photodissociation in [Ru ^{II} (tpy)(bpy)(py)] ²⁺ and [Ru ^{II} (tpy)(Me ₂ bpy)(py)] ²⁺ Complexes. Inorganic Chemistry, 2018, 57, 231-240.	4.0	35
11	Ru(<scp>ii</scp>) polypyridyl complexes as photocages for bioactive compounds containing nitriles and aromatic heterocycles. Chemical Communications, 2018, 54, 1280-1290.	4.1	68
12	Photoactivation of imatinib–antibody conjugate using low-energy visible light from Ru(<scp>ii</scp>)-polypyridyl cages. Chemical Communications, 2018, 54, 5193-5196.	4.1	23
13	Catch and Release Photosensitizers: Combining Dual-Action Ruthenium Complexes with Protease Inactivation for Targeting Invasive Cancers. Journal of the American Chemical Society, 2018, 140, 14367-14380.	13.7	92
14	New Ru(<scp>ii</scp>) complex for dual photochemotherapy: release of cathepsin K inhibitor and ¹ O ₂ production. Dalton Transactions, 2018, 47, 11851-11858.	3.3	34
15	Ru(II) Polypyridyl Complexes Derived from Tetradentate Ancillary Ligands for Effective Photocaging. Accounts of Chemical Research, 2018, 51, 1415-1421.	15.6	64
16	Affinity-Enhanced Luminescent Re(I)- and Ru(II)-Based Inhibitors of the Cysteine Protease Cathepsin L. Inorganic Chemistry, 2018, 57, 7881-7891.	4.0	5
17	Illuminating cytochrome P450 binding: Ru(<scp>ii</scp>)-caged inhibitors of CYP17A1. Chemical Communications, 2017, 53, 3673-3676.	4.1	61
18	Unusual Role of Excited State Mixing in the Enhancement of Photoinduced Ligand Exchange in Ru(II) Complexes. Journal of the American Chemical Society, 2017, 139, 18295-18306.	13.7	23

#	Article	IF	CITATIONS
19	Validation of Ru(II)â€eaged Abiraterone as a Chemical Tool for Controlling CYP17A1 Activity with Visible Light. FASEB Journal, 2017, 31, 669.2.	0.5	O
20	New Ru ^{II} Complex for Dual Activity: Photoinduced Ligand Release and ¹ O ₂ Production. Chemistry - A European Journal, 2016, 22, 3704-3708.	3.3	53
21	Caging the uncageable: using metal complex release for photochemical control over irreversible inhibition. Chemical Communications, 2016, 52, 12590-12593.	4.1	36
22	Effects of Methyl Substitution in Ruthenium Tris(2-pyridylmethyl)amine Photocaging Groups for Nitriles. Inorganic Chemistry, 2016, 55, 6968-6979.	4.0	24
23	Selective Release of Aromatic Heterocycles from Ruthenium Tris(2-pyridylmethyl)amine with Visible Light. Inorganic Chemistry, 2016, 55, 10-12.	4.0	29
24	Photoactivated inhibition of cathepsin K in a 3D tumor model. Biological Chemistry, 2016, 397, 571-582.	2.5	24
25	Imaging Sites of Inhibition of Proteolysis in Pathomimetic Human Breast Cancer Cultures by Light-Activated Ruthenium Compound. PLoS ONE, 2015, 10, e0142527.	2.5	20
26	Solid-Phase Synthesis as a Platform for the Discovery of New Ruthenium Complexes for Efficient Release of Photocaged Ligands with Visible Light. Inorganic Chemistry, 2015, 54, 1901-1911.	4.0	20
27	Selective Photodissociation of Acetonitrile Ligands in Ruthenium Polypyridyl Complexes Studied by Density Functional Theory. Inorganic Chemistry, 2015, 54, 8003-8011.	4.0	38
28	Inhibition of Cathepsin Activity in a Cellâ€Based Assay by a Lightâ€Activated Ruthenium Compound. ChemMedChem, 2014, 9, 1306-1315.	3.2	56
29	Ruthenium Tris(2-pyridylmethyl)amine as an Effective Photocaging Group for Nitriles. Inorganic Chemistry, 2014, 53, 3272-3274.	4.0	54
30	Metal-based methods for protein inactivation. Current Opinion in Chemical Biology, 2013, 17, 197-203.	6.1	12
31	Inhibition of the purified 20S proteasome by non-heme iron complexes. Metallomics, 2012, 4, 174-178.	2.4	3
32	Novel Polypyridyl chelators deplete cellular zinc and destabilize the Xâ€linked inhibitor of apoptosis protein (XIAP) prior to induction of apoptosis in human prostate and breast cancer cells. Journal of Cellular Biochemistry, 2012, 113, 2567-2575.	2.6	20
33	Selective Inactivation of Serine Proteases by Nonheme Iron Complexes. Inorganic Chemistry, 2011, 50, 3934-3945.	4.0	6
34	Light Activation of a Cysteine Protease Inhibitor: Caging of a Peptidomimetic Nitrile with Ru ^{II} (bpy) ₂ . Journal of the American Chemical Society, 2011, 133, 17164-17167.	13.7	122
35	Preparation of N-acetyl, tert-butyl amide derivatives of the 20 natural amino acids. Amino Acids, 2010, 38, 747-751.	2.7	4
36	Oxidation of Glutathione by [Fe ^{IV} (O)(N4Py)] ²⁺ : Characterization of an [Fe ^{III} (SG)(N4Py)] ²⁺ Intermediate. Inorganic Chemistry, 2010, 49, 4759-4761.	4.0	20

#	Article	IF	CITATIONS
37	Iron-binding and mobilization from ferritin by polypyridyl ligands. Metallomics, 2010, 2, 407.	2.4	15
38	Oxidation of the Natural Amino Acids by a Ferryl Complex: Kinetic and Mechanistic Studies with Peptide Model Compounds. Inorganic Chemistry, 2009, 48, 7729-7739.	4.0	30
39	Targeting Peptides with an Iron-Based Oxidant:Â Cleavage of the Amino Acid Backbone and Oxidation of Side Chains. Journal of the American Chemical Society, 2007, 129, 12390-12391.	13.7	28